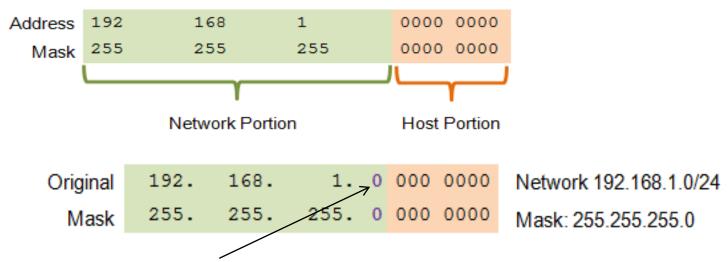


Chapter 9: Subnetting IP Networks

Introduction to Networking

Cisco | Networking Academy® | Mind Wide Open™



- 9.1 Subnetting an IPv4 Network
- 9.2 Addressing Schemes
- 9.3 Design Considerations for IPv6
- 9.4 Summary

2

Subnetting an IPv4 Network Basic Subnetting

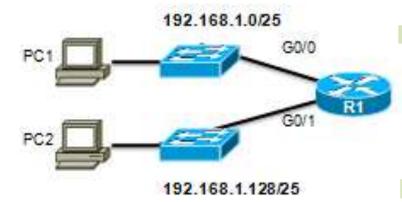
- Borrowing Bits to Create Subnets
- Borrowing 1 bit $2^1 = 2$ subnets

Borrowing 1 Bit from the host portion creates 2 subnets with the same subnet mask

Subnet 0

Network 192.168.1.0-127/25

Mask: 255.255.255.128


Subnet 1

Network 192.168.1.128-255/25

Mask: 255.255.255.128

Subnetting an IPv4 Network Subnets in Use

Subnet 0 Network 192.168.1.**0-127/25**

Subnet 1
Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

Network Address

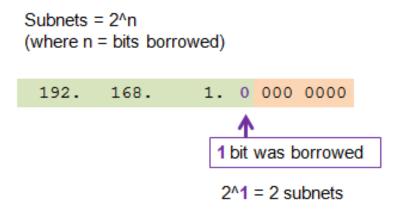
192. 168. 1. 1 000 0000 = 192.168.1.128

First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129

Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254


Broadcast Address

192. 168. 1. 1 111 1111 = 192.168.1.255

Subnetting an IPv4 Network

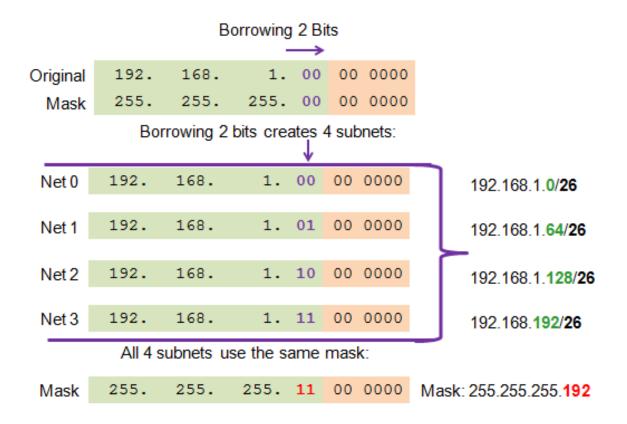
Subnetting Formulas

Calculate Number of Subnets

Calculate Number of Hosts

```
Hosts = 2^n (where n = host bits remaining)

192. 168. 1. 0 000 0000


7 bits remain in host field

2^7 = 128 hosts per subnet
```

Subnetting an IPv4 Network

Creating 4 Subnets

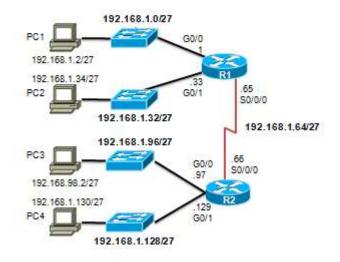
■Borrowing 2 bits to create 4 subnets. 2² = 4 subnets

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Creating 8 Subnets

■Borrowing 3 bits to Create 8 Subnets. **2**³ = **8 subnets**

Net 0	Network	192.	168.	1.	000	0 0000	192.168.1.1
	Fist	192.	168.	1.	000	0 0001	192.168.1.1
	Last	192.	168.	1.	000	1 1110	192.168.1.30
	Broadcast	192.	168.	1.	000	1 1111	192.168.1.31
Net 1	Network	192.	168.	1.	001	0 0000	192.168.1.32
	Fist	192.	168.	1.	001	0 0001	192.168.1.33
	Last	192.	168.	1.	001	1 1110	192.168.1.62
	Broadcast	192.	168.	1.	001	1 1111	192.168.1.63
	Network	192.	168.	1.	010	0 0000	192.168.1.64
Net 2	Network Fist	192. 192.	168. 168.	1.	010 010	0 0000 0 0001	192.168.1.64 192.168.1.65
Net 2							
Net 2	Fist	192.	168.	1.	010	0 0001	192.168.1.65
Net 2	Fist Last	192. 192.	168. 168.	1.	010 010	0 0001 1 1110	192.168.1.65 192.168.1.94
Net 2	Fist Last Broadcast	192. 192. 192.	168. 168. 168.	1. 1.	010 010 010	0 0001 1 1110 1 1111	192.168.1.65 192.168.1.94 192.168.1.95
	Fist Last Broadcast Network	192. 192. 192.	168. 168. 168.	1. 1. 1.	010 010 010 010	0 0001 1 1110 1 1111 0 0000	192.168.1.65 192.168.1.94 192.168.1.95 192.168.1.96
	Fist Last Broadcast Network Fist	192. 192. 192. 192.	168. 168. 168. 168.	1. 1. 1.	010 010 010 010 010	0 0001 1 1110 1 1111 0 0000 0 0001	192.168.1.65 192.168.1.94 192.168.1.95 192.168.1.96 192.168.1.97



Creating 8 Subnets(continued)

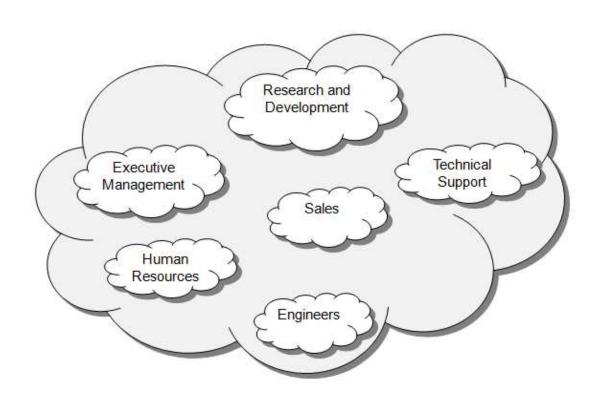
Net 4	Network	192.	168.	1.	100	0 0000	192.168.1.128
	Fist	192.	168.	1.	100	0 0001	192.168.1.129
	Last	192.	168.	1.	100	1 1110	192.168.1.158
	Broadcast	192.	168.	1.	100	1 1111	192.168.1.159
	Network	192.	168.	1.	101	0 0000	192.168.1.160
Net 5	Fist	192.	168.	1.	101	0 0001	192.168.1.161
11010	Last	192.	168.	1.	101	1 1110	192.168.1.190
	Broadcast	192.	168.	1.	101	1 1111	192.168.1.191
	Network	192.	168.	1.	110	0 0000	192.168.1.192
Net 6	Fist	192.	168.	1.	110	0 0001	192.168.1.193
11010	Last	192.	168.	1.	110	1 1110	192.168.1.222
	Broadcast	192.					400 400 4 000
	Divadeast	192.	168.	1.	110	1 1111	192.168.1.223
	Network	192.	168.	1.	111	0 0000	192.168.1.223 192.168.1.224
Net 7							
Net 7	Network	192.	168.	1.	111	0 0000	192.168.1.224
Net 7	Network Fist	192.	168.	1.	111 111	0 0000 0 0001	192.168.1.224 192.168.1.225

Subnet Allocation

Subnetting Based on Host Requirements

There are two considerations when planning subnets:

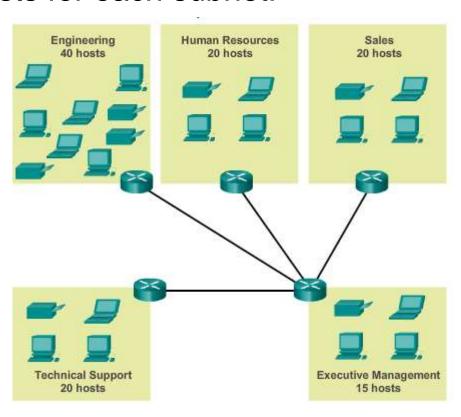
- Number of Subnets required
- Number of Host addresses required
- Formula to determine number of useable hosts


- 2ⁿ (where n is the number the number of host bits remaining) is used to calculate the number of hosts
- -2 Subnetwork ID and broadcast address cannot be used on each subnet

Determining the Subnet Mask

Subnetting Network-Based Requirements

Calculate number of subnets

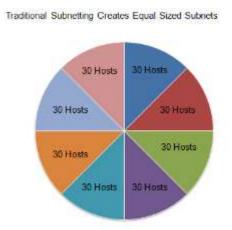

- Formula 2ⁿ (where n is the number of bits borrowed)
- Subnet needed for each department in graphic

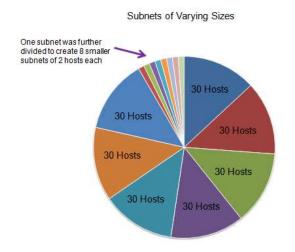
Determining the Subnet Mask

Subnetting To Meet Network Requirements

- It is important to balance the number of subnets needed and the number of hosts required for the largest subnet.
- Design the addressing scheme to accommodate the maximum number of hosts for each subnet.
- •Allow for growth in each subnet.

Determining the Subnet Mask Subnetting To Meet Network Requirements (cont)


Subnets and Addresses


```
10101100.00010000.000000000.01000000 172.16.0.64/26
  10101100.00010000.000000000.10000000 172.16.0.128/26
  10101100.00010000.000000000.110000000 172.16.0.192/26
  10101100.00010000.000000<mark>01.00000000</mark> 172.16.1.0/26
  10101100.00010000.000000001.010000000 172.16.1.64/26
  10101100.00010000.000000001.10000000 172.16.1.128/26
                 Nets 7 – 14 not shown
15 10101100.00010000.000000011.10000000 172.16.3.128/26
16 10101100.00010000.000000<mark>11.110000000</mark> 172.16.3.192/26
                      2^4 = 16
                              2^{6}-2=62
                      subnets
                              Hosts per
                              subnet
```

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Benefits of Variable Length Subnet Masking Traditional Subnetting Wastes Addresses

- Traditional subnetting same number of addresses is allocated for each subnet.
- Subnets that require fewer addresses have unused (wasted) addresses. For example, WAN links only need 2 addresses.
- Variable Length Subnet Mask (VLSM) or subnetting a subnet provides more efficient use of addresses.

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

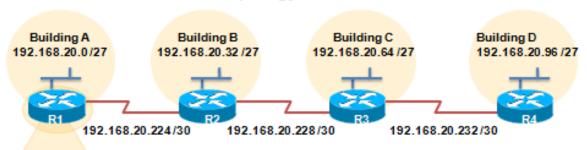
Variable Length Subnet MaskingVariable Length Subnet Masks (VLSM)

- •VLSM allows a network space to be divided in unequal parts.
- Subnet mask will vary depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are subnetted again.
- Process repeated as necessary to create subnets of various sizes.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Benefits of Variable Length Subnet Masking Basic VLSM

VLSM Subnetting Scheme


```
11000000.10101000.00010100 .000 00000 192.168.20.0/24
0 11000000.10101000.00010100.00000000 192.168.20.0/27
1 11000000.10101000.00010100.00100000 192.168.20.32/27
                                                                  LANs
2 11000000.10101000.00010100 .010 00000 192.168.20.64/27
                                                                  A, B, C, D
3 11000000.10101000.00010100.01100000 192.168.20.96/27
4 11000000.10101000.00010100 .100 00000 192.168.20.128/27
                                                                  Unused/
  11000000.10101000.00010100 .101 00000 192.168.20.160/27
                                                                  Available
   11000000.10101000.00010100 .110 00000 192.168.20.192/27_
   11000000.10101000.00010100 .111 00000 192.168.20.224/27
  3 more bits borrowed from subnet 7:
7:0 11000000.10101000.00010100 .11100000 192.168.20.224/30
7:1 11000000.10101000.00010100 .11100100 192.168.20.228/30
                                                                  WANs
7:2 11000000.10101000.00010100 .111010 00 192.168.20.232/30
7:3 11000000.10101000.00010100 .111011 00 192.168.20.236/30 10000000.1010101000.00010100 .111011 00 192.168.20.236/30
7:4 11000000.10101000.00010100 .111100 00 192.168.20.240/30
                                                                  Unused/
7:5 11000000.10101000.00010100.11110100 192.168.20.244/30
                                                                  Available
7:6 11000000.10101000.00010100.11111000 192.168.20.248/30
7:7 11000000.10101000.00010100 .111111 00 192.168.20.252/30_
```

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 15

Benefits of Variable Length Subnet Masking VLSM in Practice

- Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- Each WAN link will be assigned a subnet with /30 mask.

Network Topology: VLSM Subnets


```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ip address 192.168.20.1 255.255.255.224
R1(config-if) #exit
R1(config) #interface serial 0/0/0
R1(config-if) #ip address 192.168.20.225 255.255.252
R1(config-if) #end
R1#
```

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

VLSM Subnetting of 192.168.20.0 /24

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

	/30 Network	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Unused	.236	.237238
Unused	.240	.241242
Unused	.244	.245246
Unused	.248	.249250
Unused	.252	.253254

Planning to Address the Network

Allocation of network addresses should be planned and documented for the purposes of:

- Preventing duplication of addresses
- Providing and controlling access
- Monitoring security and performance

Addresses for Clients - usually dynamically assigned using Dynamic Host Configuration Protocol (DHCP)

Network: 192.168.1.0/24

Sample Network Addressing Plan

Use	First	Last
Host Devices	.1	.229
Servers	.230	.239
Printers	.240	.249
Intermediary Devices	.250	.253
Gateway (router LAN interface)	.254	

Cisco | Networking Academy® | Mind Wide Open™