

CCNA Security - Part III

Virtual Private Networks (VPN)

Chapter 5

Fundamentals of VPN Technology and Cryptography

Fundamentals of VPN Technology

- Understanding VPNs and why we use them
- Cryptography basic components
- Public key infrastructure
- Putting the pieces of PKI to work

Types of VPN technologies

IPsec

• Implements security of IP packets at Layer 3 of the OSI model, and can be used for site-to-site VPNs and remote-access VPNs.

SSL

 Secure Sockets Layer implements security of TCP sessions over encrypted SSL tunnels of the OSI model, and can be used for remote-access VPNs (as well as being used to securely visit a web server that supports it via HTTPS).

MPLS

 Multiprotocol Label Switching and MPLS Layer 3 VPNs are provided by a service provider

Two main types of VPN's

- Remote-Access VPN
- Site-to-Site VPN

Main benefits of VPN's

- Confidentiality
 - Confidentiality means that only the intended parties can understand the data that is sent.
- Data integrity
 - Data can not be changed or modified in transit receiver will notice
- Authentication
 - Identity of remote user known
- Antireplay protection
 - Packet or packet sequence cannot be retransmitted

Ciphers and keys

- A cipher is a set of rules or algorithms how to perform encryption and decryption
 - Substitution: This type of cipher substitutes one character for another (CAESAR)
 - **Polyalphabetic:** This is similar to substitution, but instead of using a single alphabet, it could use multiple alphabets and switch between them by some trigger character in the encoded message (ENIGMA)
 - **Transposition:** This uses many different options, including the rearrangement of letters. Modern Ciphers use complex forms of transpositions called block ciphers.

Block and stream ciphers

Block Ciphers

- A block cipher is a symmetric key (same key to encrypt and decrypt) cipher that operates on a group of bits called a block. A block cipher encryption algorithm may take a 64-bit block of plain text and generate a 64-bit block of cipher text.
- Advanced Encryption Standard (AES)
- Triple Digital Encryption Standard (3DES)
- Blowfish
- Digital Encryption Standard (DES)
- International Data Encryption Algorithm (IDEA)

Stream ciphers

Stream Ciphers

- A stream cipher is a symmetric key cipher (same key to encrypt as decrypt), where each bit of plaintext data to be encrypted is done 1 bit at a time against the bits of the key stream, also called a cipher digit stream
- An advantage of stream ciphers in military cryptography is that the cipher stream can be generated in a separate box that is subject to strict security measures

Symmetric encryption Algorithms

- Symmetric algorithm
 - Use the same key to encrypt and decrypt
 - Key distribution: How will the intended receiver get the key
- Examples:
 - DES Data Encryption Standard
 - 3DES Triple DES
 - AES Advanced Encryption Standard (Best practice)
 - IDEA International Data Encryption Algorithm
 - RC2, RC4, RC5, RC6 Rivest cipher
 - Blowfish

Asymmetric Algorithms

- Asymmetric algorithms use different encryption and decryptions keys
- The keys are mathematically bound together
- High cost in CPU power
- Examples:
 - RSA Named after Rivest, Shamir, and Adleman, who created the algorithm
 - DH Diffie-Hellman key exchange protocol

Encryption: Symmetrical keys

- Same key used with encryption and decryption
- Symmetrical cipher examples:
 - DES: 56 bit key
 - 3DES: three different 56 bit keys
 - AES: 128, 192 and 256 bit keys

Encryption with Asymmetric keys

- Assymetrical keys uses different keys for encryption and decryption
- Alice generates a public and a secret key. The public key is sent to Bob
- Bob encrypts his message with the public key and transmits the encypted message to Alice
- Alice decrypts the message with the secret key.
- RSA is a assymmetric encryption cipher
 - Key size 1024 to 4096 typical

Diffie and Hellman

- Dr. Whitfield Diffie
- Bachelor of science mathmatics
- Retired but studying security in grid computing

- Martin Hellman
- Professor Emeritus from Stanford University
- Retired

Diffie-Hellman key exchange

- Uses mathematical one-way functions
- Security based on huge prime numbers
 - Brute force attacks would take years
- Mathematics out of scope in this course
- Different Diffie-Hellman groups
 - DH Group 1 = 768 bit
 - DH Group 2 = 1024 bit
 - DH Group 5 = 1536 bit
- Higher group numbers are more secure

Diffie-Hellman key exchange

- Uses mathematical one-way functions
- Security A 1024 bit prime:
 - Brute f
- Mathem 7860296048756011706444423684197180216
- Different 1585193689478337958649255415021805654
 - DH Gra 8598050364644054819923910005079287700
 - DH Gra 3355816639229553136239076508735759914
 - DH Gra 82257486257500742530207744771258955095
 - Higher of 79377784244424266173347276292993876687
 - 0920560605027081084290769293201912819 4467627007

hashes

- A hash is a mathematical oneway function
- A digital fingerprint of a dataset
- Maps variable length data to fixed length data
- Used for example to protect passwords
- MD5 is still used
 - MD5 hash is considered compromised
 - Other hashes such as SHA-1, SHA-2 and SHA-3 are more secure. SHA-3 the most secure.

Note the output of the hash function all have the same length – regardless of the same length

The hash value is cal different digest

Basic principle

The password are

The "hacker" capt

The hacker has learned
The username – the public URI
The nonce
The hash'ed password+nonce
Next time the server will choice a new random nonce

Wireshark capture


```
Filter:
                  sip
                                                    Expression...
                                                            Clear
                                                                   Apply
                                                                          Save
                                                                               New Label
                                 Destination
                                               Protocol Info
                  Source
              160 10.197.0.104 87.48.131.54 SIP Request: REGISTER sip:vk102113.

    Packet

              161 87.48.131.54
                                                     Status: 401 Unauthorized
                                 10.197.0.104 SIP
    • No p Frame 161: 540 bytes on wire (4320 bits), 540 bytes captured (4320 b
            Ethernet II, Src: Motorola_be:4c:84 (00:24:37:be:4c:84), Dst: LnSrit
• Packet Internet Protocol Version 4, Src: 87.48.131.54 (87.48.131.54), Dst:
            ■ User Datagram Protocol, Src Port: sip (5060), Dst Port: sip (5060)
           ■ Session Initiation Protocol (401)

□ Status-Line: SIP/2.0 401 Unauthorized

                Status-Code: 401
                [Resent Packet: False]
                 The server adds a nonce in the packet to the client
             ■ Message Header
              ■ From: "5401 heth"<sip:henrikth@v</p>
                                                             6ip.dk>;tag=95859cb8-ac!

■ To: "5401 heth"<sip:henrikth@vk1
</p>
                                                          oip.dk>;tag=5e13d931038de3
                call-ID: 68656e72696b-aabb-7065-
                                                         /23b0-0-2eba@10.197.0.104
       Filter:

■ CSeq: 1 REGISTER

      No.
              ■ Via: SIP/2.0/UDP 10.197.0.104:50 pranch=z9hG4bK-33-c7e4-4abde8b4
         160
                Content-Length: 0
         161
              ■ WWW-Authenticate: Digest nonce="3B75025A1DDC2D510000000F79
         162
         163 87.48.131.54 10.197.0.104 SIP
                                              Status: 200 OK
                                                                 (1 bindings)
```


Wireshark capture

- Packet 160 Client register request
 - No password attached
- Packet 161 Register rejected
- Packet 162 Client register request
 - Hash digest included
- Packet 163 Server registers client
 - The client is online

	Filter:	sip		v	Expression	Clear	Apply	Save	New Label	
No		Source	Destination	Protocol	Info					
	160	10.197.0.104	87.48.131.54	SIP	Request	:: REG	SISTER	sip:vk	<102113.	hvoip.dk
	161	. 87.48.131.54	10.197.0.104	SIP	Status:	401	Unauth	norized	(O	bindings)
	162	2 10.197.0.104	87.48.131.54	SIP	Request	:: RE0	SISTER	sip:vk	(102113)	hvoip.dk
	163	8 87.48.131.54	10.197.0.104	SIP	Status:	200	OK	(1 bir	ndings)	

HMAC

- Hashed Message Authentication Code (HMAC)
- Includes a secret key in the hash calculation
- Eavesdropper cannot tamper with packets

Digital signatures

- A digital signature provides three benefits:
 - Authentication Who you are
 - Data integrity Data not tampered
 - Nonrepudiation Proves that it is you. (You cant say it's not you)
- A digital certificate needs a trusted third party a CA
- A Certificate Authority hands out digital certificates
 - Public key certification from CA ensures you trust the other party

Key management

- Key management deals with
 - Generating keys (Symmetric and assymmetric)
 - Verifying keys
 - Storing keys safely
 - Destroying keys after end-of-life
- Next-generation Encryption protocols
 - NSA suite A cryptography Classified algorithms (Wikipedia link)
 - NSA suite B cryptography Public algorithms (<u>Wikipedia link</u>)

IPsec and TLS/SSL

- IPsec is a suite of protocols used to protect IP packets for decades
 - Used for both remote-access and Site-to-Site VPN's
 - Both parties would need a PSK Preshared Key or a CA digital certificate
- TLS/SSL Transport Layer security/Secure Socket Layer
 - SSL was developed by Netscape First version in 1995
 - TLS version 1 was introduced as a new version of SSL version 3 in 1999
 - TLS/SSL is used to make HTTPS: connections
 - To make a secure connection only one party needs a digital certificate
- SSL server test (Link) https://globalsign.ssllabs.com/

VPN technologies review

Component	Function	Examples of Use		
Symmetrical encryption algorithms	Use the same key for encrypting and decrypting data.	DES, 3DES, AES, IDEA		
Asymmetrical encryption	Uses a public and private key. One key encrypts the data, and the other key in the pair is used to decrypt.	RSA, Diffie-Hellman		
Digital signature	Encryption of hash using private key, and decryption of hash with the sender's public key.	RSA signatures		
Diffie-Hellman key exchange	Uses a public-private key pair asymmetrical algorithm, but creates final shared secrets (keys) that are then used by symmetrical algorithms.	Used as one of the many services of IPsec		
Confidentiality	Encryption algorithms provide this by turning clear text into cipher text.	DES, 3DES, AES, RSA, IDEA		
Data integrity	Validates data by comparing hash values.	MD5, SHA-1		
Authentication	Verifies the peer's identity to the other peer.	PSKs, RSA signatures		

PKI - Public Key Infrastructure

 This section covers the moving parts and pieces involved with the public key infrastructure

Driver License PKI Analogy

Public and Private Key Pairs

- A key pair is a set of two keys that work in combination with each other as a team
- For example, the private key for a web server is known only to that specific web server
- The public key is well public
- Data encrypted with the public key can only be decrypted with the web servers private key
- This is called:
 - public key cryptography or asymmetric key cryptography

Public and Private Key Pairs

Key generation process

Asymmetric key distribution

- Bob distributes his public key to Alice
 - Anybody could intercept his key

Asymmetric key en/de-cryption

- Using the public key Alice encrypts the secret message
- The only key that can decrypt the message is Bob's private key
 - What's encrypted with the public key can only be decrypted with the private
 - What's encrypted with the private key can only be decrypted with the public

Asymmetric key for identity

- · If bob from a trusted third party got Alice's public key Alice and
- Alice proves she has the private key Bob know he is talking to Alice

RSA algorithm keys and certificates

- Bob and Alice each generate their own key-pair
- They enroll with a CA (Certificate Authority)
 - The CA know the IP addresses, names and public keys of Bob and Alice
 - The CA generate and send Digital Certificates to Bob and Alice
 - The CA signes Bob and Alices Digital Certificates authenticating them
- When Bob and Alice want to authenticate each other they
 - Send their Digital Certificate to the other party
 - They verify the authenticity of the certificate by checking the signature of a CA

Creating a Digital Certificate

- Bob takes some data and
 - Generate a hash from the data
 - Encrypts the hash with his private key
 - Transmit the data and the encrypted hash in an encrypted packet
- Alice receives the data and the encrypted hash
 - Alice's computer obtains Bob's public key from the CA (www.bob.dk)
 - Alice decrypts the hash with Bob's public key
 - Alice generate a hash from the data
 - If Bob's hash and Alice's hash are equal Bob has proved his identity

Digital Signature Process

Certificate Authority - CA

- A CA is a computer or entity that generates and issues digital certificates.
- Inside the certificate is information about the identity of a device
- Such as
 - fully qualified domain name (FQDN) fx. www.Mercantec.dk
 - Public key

Root Certificate

A root certificate contains the public key of the CA server

Chapter 6

Fundamentals of IP security

The goal of IPsec

Goal	Method That Provides the Feature		
Confidentiality	Encryption		
Data integrity	Hashing		
Peer authentication	Pre-shared keys, RSA digital signatures		
Antireplay	Integrated into IPsec, basically applying serial numbers to packets		

The goal of IPsec

Confidentiality:

Provided through encryption changing clear text into cipher text.

Data integrity:

 Provided through hashing and/or through Hashed Message Authentication Code (HMAC)

Authentication:

 Provided through authenticating the VPN peers near the beginning of a VPN session using pre-shared keys (PSK) or digital signatures

Antireplay protection:

When VPNs are established, the peers can sequentially number the packets

Internet Key Exchange (IKE) Protocol

- IPsec uses the *Internet Key Exchange (IKE)* protocol to negotiate and establish secured site-to-site or remote access *virtual private network (VPN)* tunnels
- IKE is a framework provided by the Internet Security Association and Key Management Protocol (ISAKMP)
- In IKE Phase 1 IPsec peers negotiate and authenticate each other.
- In Phase 2 they negotiate keying materials and algorithms for the encryption of the data being transferred over the IPsec tunnel.

Internet Key Exchange (IKE) Protocol

- There are two versions of IKE:
 - IKEv1: Defined in RFC 2409, The Internet Key Exchange
 - IKE version 2 (IKEv2): Defined in RFC 4306, Internet Key Exchange (IKEv2)

 Protocol
- IKEv2 enhances the function of performing dynamic key exchange and peer authentication

IPsec

- IPsec is standardized and not properatary. (Cisco)
- IPsec er scalable and can be used from small to huge networks

Abbrevations

- ISAKMP (Internet Security and Key Management Protocol)
 - Establish , negociate connections
- SA (Security Association)
 - The secure partner in the other end of the VPN connection
- RSA (Rivest, Shamir og Adleman)
 - Assymetric encryption algorithm
- CA (Certificate Authority)
 - Digital signature provider

Agenda og forkortelser

- IPsec protocols
 - IKE (Internet Key Exchange)
 - ESP (Encapsulating Security Payload)
 - AH (Authentication Header)
- IPsec encryption
 - DES (Data Encryption Standard)
 - 3DES (Triple Data Encryption Standard)
 - AES (Advanced Encryption Standard)
- HASH: Digital fingerprint
 - HMAC (Hash-based Message Authentication Code)
 - MD5 (Message Digest 5)
 - SHA (Secure Hash Algorithm)

IPsec overview

- Data Confidentiality (option i IPsec)
 - Kryptering af data i transit.
 - Krypteringsalgoritmer i ESP: DES, 3DES, AES
- Data Integrity (Mandatory i IPsec)
 - Data er ikke ændret i transit.
 - HASH værdi: MD5, SHA
- Data origin authentification (Mandatory i IPsec)
 - Sikkerhed for partners identitet
 - Identifikation: RSA signatur eller Preshared-key
- Anti replay (Option i IPsec)
 - Man kan ikke 'optage' og gentransmitere en transaktion.
 - Sekvensnumre i pakkerne skal passe.

IPsec overblik

- IKE (Internet Key Exchange)
 - Exchange of keys and security parameters
- ESP (Encapsulating Security Payload)
 - Can secure
 - Confidentiality (Encryption)
 - Integrity (data not changed in transit)
 - Authentication (Identity of transmitter)
 - Anti-replay (Data can't be retransmitted. (Sequence numbers))
- AH (Authentication Header)
 - Can secure
 - Integrity (data not changed in transit)
 - Authentication (Identity of transmitter)
 - Anti-replay (Data can't be retransmitted. (Sequence numbers))
 - Cant secure
 - Confidentiality (Encryption)

Principle: Normal Routning

Principle: IPsec Transport Mode

Principle: IPsec Tunnel Mode

IPsec modes

- Transport mode
 - Secures from OSI layer 4 with ESP or AH

LAG 2 Header (Ethernet)	LAG 3 Header IP	ESP eller AH	LAG 4 header TCP/UDP	Data
----------------------------	--------------------	--------------	-------------------------	------

- Tunnel mode
 - Secures from OSI layer 3 with ESP or AH

LAG 2 Header (Fx Ethernet)	Ny IP Header	ESP eller AH	IP Header	TCP/UDP Header	Data
-------------------------------	--------------	--------------	-----------	-------------------	------

IPsec Headers

Chapter 7. Implementing IPsec Site-to-Site VPNs

Chapter 7

Implementing Ipsec Site-to-Site VPNs

Peer Authentication

- Identification of parters in a communication channel
 - Username and password
 - One-Time-Password (OTP)
 - Biometrics
 - Preshared keys
 - Digital certificate (Digital signature)

ISAKMP

- Internet Security Association and Key Management Protocol
- SAKMP is a procedure that defines how exchange of keys is done and what security policy used
- ISAKMP defines procedures to:
 - Establish, negociate, change and delete SA'es
 - SA = Security Associations or IPsec end poins
- ISAKMP uses the protocols defined in IKE

IKE - Internet Key Exchange

- The IKE protocol is used to exchange IPsec parameters and keys between the two VPN parties
- IKE tries to establish a Security Association (SA) between the two
- IKE uses the following protocols to perform Authentication and key exchange
 - ISAKMP
 - OAKLEY

- Internet Key Exchange
- Is a hybrid protocol used by ISAKMP
- Before any data can be exchanged IKE will
 - Exchange keys
 - Identify the other party
 - Preshared Keys
 - Digital Signatur (CA Certificate Authority)

Configuration of IPsec

- 1. Configure ISAKMP
 - Choice policy/policies
 - Preshared Keys
 - Digital certificat
- 2. Configure IPsec
- 3. Create a Crypto map
- 4. Put the crypto map on a interface
- 5. One end of the VPN is ready

Define one or more ISAKMP Policy Objects

```
R2(config)# crypto isakmp policy 1
```

- Which Diffie-Hellmann group to use
 - Group 1: 768 bit (default)
 - Group 2: 1024 bit
 - Group 5: 1536 bit

```
R2(config-isakmp)# group 2
```

- What HASH type to use
 - MD5: 128 bit
 - SHA-1: 160 bit.
 - SHA-1 More secure

R2(config-isakmp)# hash md5

- Lifetime of a SA (Security Association) before renegociation
 - Default: 86400 sekunder (en dag)

```
R2(config-isakmp)# lifetime 500
```

- How to identify the other party
 - Authentication

```
R2(config-isakmp)# authentication pre-share
```

- Who is the other party and how to identify
 - Key 0: un-encrypted password
 - Key 6: encrypted password

```
R2(config-isakmp)# exit
R2(config)# crypto isakmp key 0 18heise address 192.168.2.1
```


The full IKE configuration of preshared keys

```
R2(config)# show run
crypto isakmp policy 1
hash md5
authentication pre-share
group 2
lifetime 500
crypto isakmp key 0 l8heise address 192.168.2.1
```


Create an ACL

```
R2(config)# access-list 101 permit ip 192.168.3.0 0.0.0.255 172.16.4.0 0.0.255.255
```

- Create one or more IPsec transform sets
 - Mode tunnel (default)
 - Mode transport

```
R2(config) # crypto ipsec transform-set Kundel esp-sha-hmac esp-aes
R2(config-crypto-trans) # mode tunnel
R2(config-crypto-trans) # exit
R2(config) # crypto ipsec transform-set Kundel ah-md5-hmac
R2(config-crypto-trans) # mode tunnel
R2(config-crypto-trans) # exit
```

IPsec: Create a crypto map

Create one or more IPsec transform sets

```
R2(config) # cryto map Viborg 10 ipsec-isakmp
R2(config-crypto-map) # set peer 192.168.2.1
R2(config-crypto-map) # set transform-set Kundel Kunde2
R2(config-crypto-map) # match address 101
```

Put on a interface to start

```
R2(config)# interface fastethernet0/1
R2(config-if)# crypto-map Viborg
```

Full configuration


```
R2(config) # show run
crypto isakmp policy 1
 hash md5
 authentication pre-share
 group 2
 lifetime 500
crypto isakmp key l8heise address 192.168.2.1
crypto ipsec transform-set Kunde1 esp-aes esp-sha-hmac
crypto ipsec transform-set Kunde2 ah-md5-hmac
crypto map Viborg 10 ipsec-isakmp
 set peer 192.168.10.38
 set peer 192.168.2.1
 set transform-set Kunde1 Kunde2
 match address 101
interface FastEthernetO/1
ip address 192.168.71.1 255.255.255.0
 crypto map Viborg
access-list 101 permit ip 192.168.3.0 0.0.0.255 172.16.4.0 0.0.255.255
```

Ipsec over GRE

- IPsec only transports IP unicast traffic not Multicast.
- To transport multicast traffic from for example a routing protocol it can be tunneled through GRE first.

