

Connecting Networks

Cisco Networking Academy® Mind Wide Open®



Chapter 9

- 9.0 Introduction
- 9.1 Troubleshooting with a Systematic Approach
- 9.2 Network Troubleshooting
- 9.3 Summary

9.1 Troubleshooting with a Systematic Approach

Cisco Networking Academy® Mind Wide Open®

- Explain how network documentation is developed and used to troubleshoot network issues.
- Describe the general troubleshooting process.
- Compare troubleshooting methods that use a systematic, layered approach.
- Describe troubleshooting tools used to gather and analyze symptoms of network problems.
- Determine the symptoms and causes of network problems using a layered model.
- Troubleshoot a network using the layered model.

ntial

Network Documentation Documenting the Network

Network documentation is a complete set of accurate and current network documentation. This documentation includes:

- Configuration files, including network configuration files and endsystem configuration files
- Physical and logical topology diagrams
- A baseline performance level

Network Documentation

Network Topology Diagrams

Physical Topology

Device type

Model and manufacturer

Operating system version Cable type and identifier

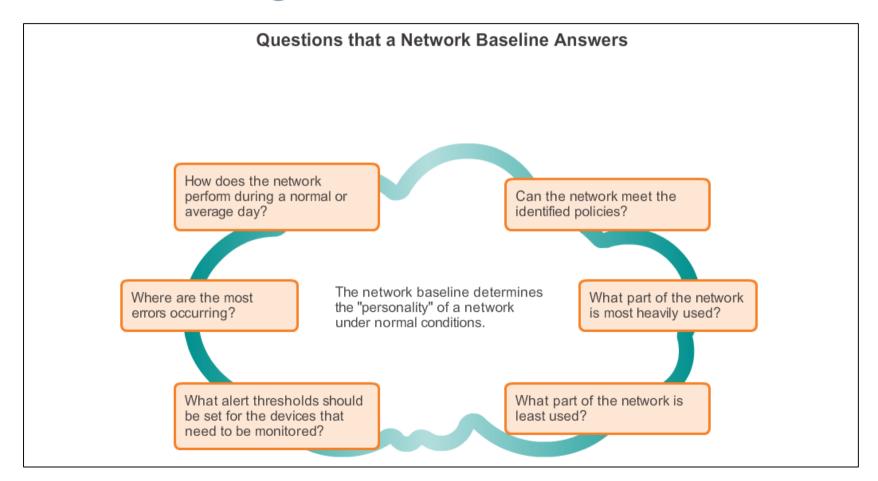
Cable specification
Connector type

Cabling endpoints

Logical Topology

Device identifiers
IP address and prefix lengths

Interface identifiers Connection type


DLCI for virtual circuits Site-to-site VPNs

Routing protocols
Static routes

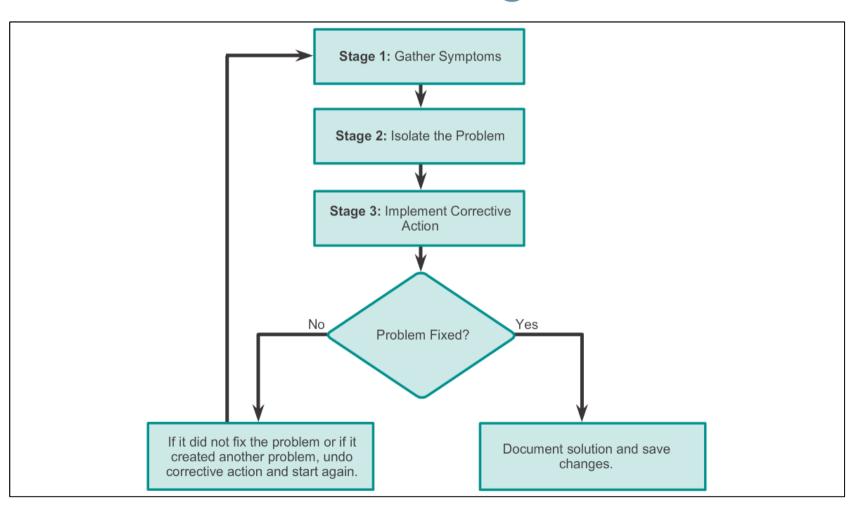
Data-link protocols WAN technologies used

Network Documentation Establishing a Not

Establishing a Network Baseline

Establishing a Network Baseline (cont.)

- Step 1. Determine what types of data to collect.
- Step 2. Identify devices and ports of interest.
- Step 3. Determine the baseline duration.



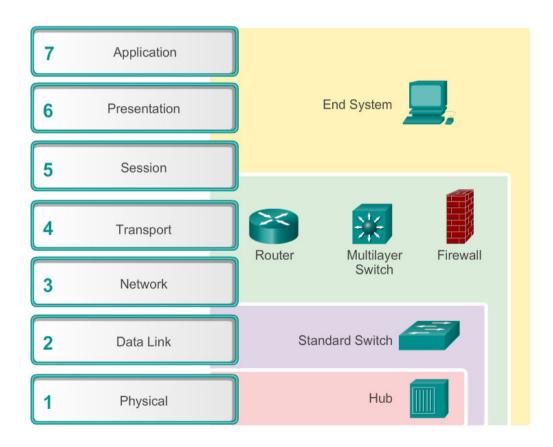
Commands that are useful to the network documentation process include:

- ping
- telnet
- show ip interface brief
- show ipv6 interface brief
- show ip route
- show ipv6 route
- show cdp neighbor detail

Troubleshooting Process

General Troubleshooting Procedures

Commands for Gathering Symptoms


Command Description				
ping {host ip-address}	Description Sends an echo request packet to an address, then waits for a reply. The host ip-address variable is the IP alias or IP address of the target system.			
traceroute {destination}	Identifies the path a packet takes through the networks. The destination variable is the hostname or IP address of the target system.			
telnet {host ip-address}	Connects to an IP address using the Telnet application.			
show ip interface brief show ipv6 interface brief	Displays a summary of the status of all interfaces on a device.			
show ip route show ipv6 route	Displays contents of currently running configuration file.			
show running-config	Displays a list of options for enabling or disabling debugging events on a device.			
[no] debug ?	Displays a list of options for enabling or disabling debugging events on a device.			
show protocols	Displays the configured protocols and shows the global and interface-specific status of any configured Layer 3 protocol.			

Troubleshooting Process Questioning End Users

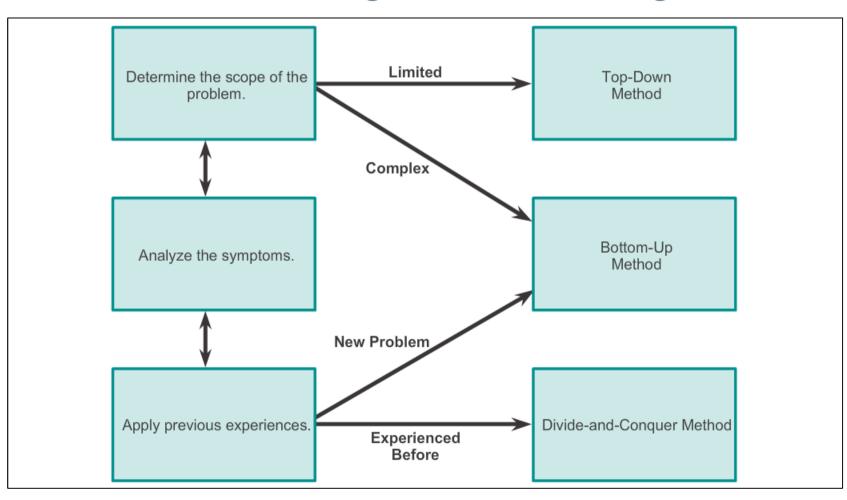
Guidelines	Example End-user Questions			
Ask questions that are pertinent to the problem.	What does not work?			
Use each question as a means to either eliminate or discover possible problems.	Are the things that do work and the things that do not work related?			
Speak at a technical level that the user can understand.	Has the thing that does not work ever worked?			
Ask the user when the problem was first noticed.	When was the problem first noticed?			
Did anything unusual happen since the last time it worked?	What has changed since the last time it did work?			
Ask the user to recreate the problem, if possible.	Can you reproduce the problem?			
Determine the sequence of events that took place before the problem happened.	When exactly does the problem occur?			

Using Layered Models Using Layered Models for Troubleshooting

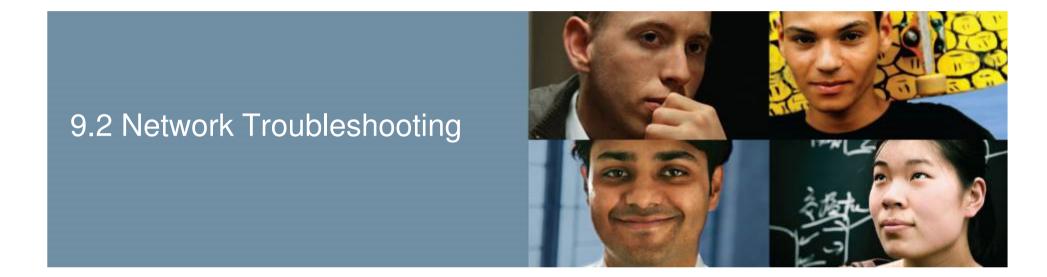
OSI Reference Model

Isolating the Issue Using Layered Models Troubleshooting Methods

Using the layered models, there are three primary methods for troubleshooting networks:


- Bottom-up
- Top-down
- Divide-and-conquer

Troubleshooting Methods (cont.)


In addition to the systematic, layered approach to troubleshooting, there are also, less-structured troubleshooting approaches:

- One troubleshooting approach is based on an educated guess by the network administrator, based on the symptoms of the problem.
- Another approach involves comparing a working and nonworking situation, and spotting significant differences.
- Swapping the problematic device with a known, working one is a quick way to troubleshoot.

Isolating the Issue Using Layered Models **Guidelines for Selecting a Troubleshooting Method**

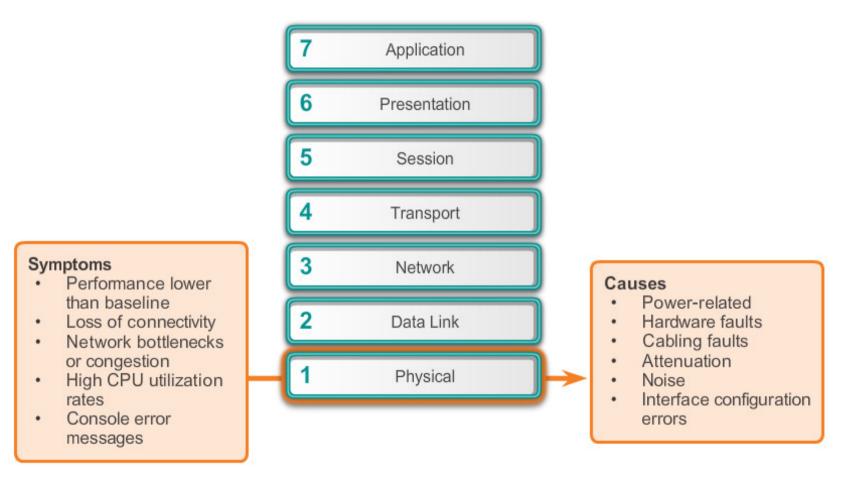
Troubleshooting Tools Software Troubleshooting Tools

Common software troubleshooting tools include:

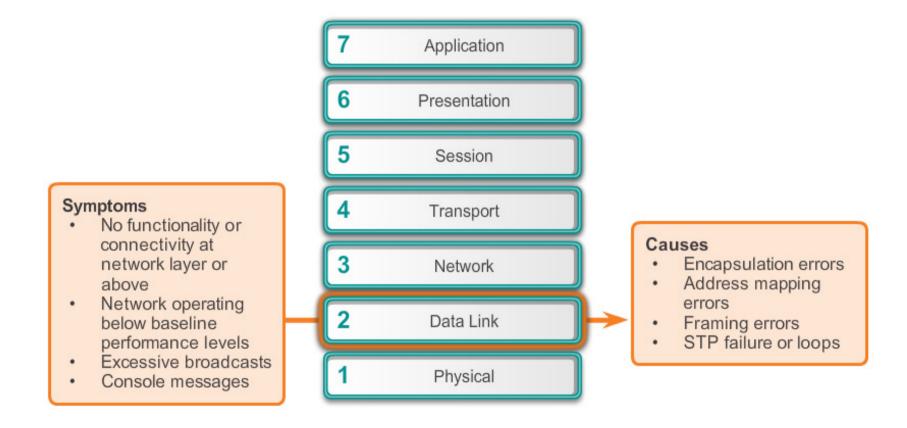
- NMS tools
- Knowledge bases
- Baselining tools
- Host-based protocol analyzers
- Cisco IOS EPC

Troubleshooting Tools Hardware Troubleshooting Tools

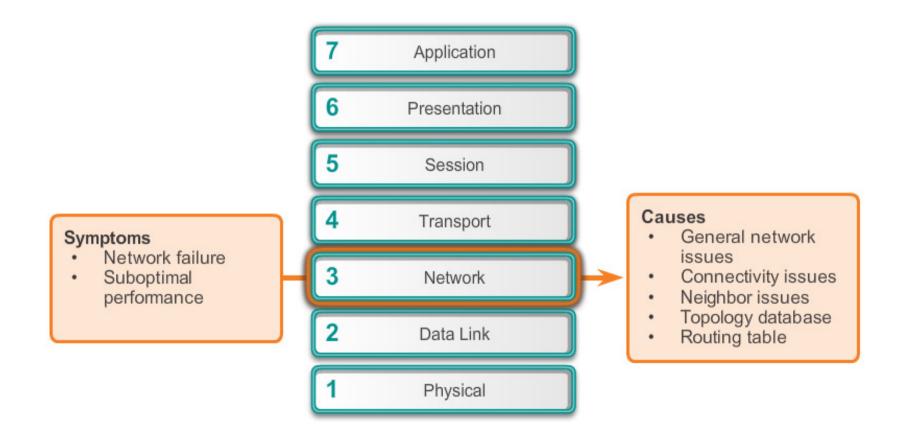
Common hardware troubleshooting tools include:


- Network analysis module
- Digital multimeters
- Cable testers
- Cable analyzers
- Portable network analyzers

Troubleshooting Tools Using a Syslog Server for Troubleshooting

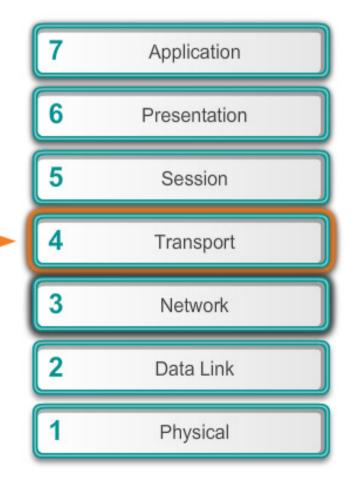

Severity Level

	Level	Keyword	Description	Definition
Highest Level	0	emergencies	System is unusable	LOG_EMERG
	1	alerts	Immediate action is needed	LOG_ALERT
	2	critical	Critical conditions exist	LOG_CRIT
	3	errors	Error conditions exist	LOG_ERR
	4	warnings	Warning conditions exist	LOG_WARNING
	5	notifications	Normal but significant condition	LOG_NOTICE
	6	informational	Informational messages only	LOG_INFO
Lowest Level	7	debugging	Debugging messages	LOG_DEBUG

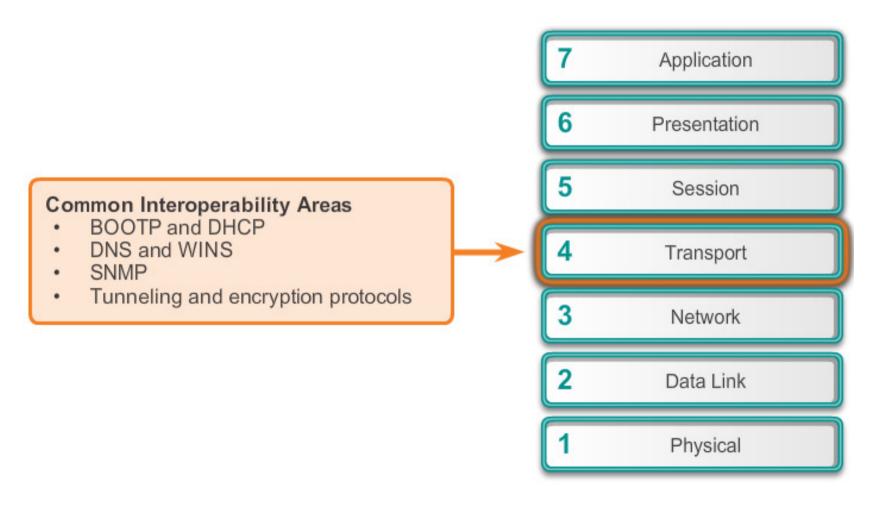

Symptoms and Causes of Network Troubleshooting Physical Layer Troubleshooting

Symptoms and Causes of Network Troubleshooting Data Link Layer Troubleshooting

Network Layer Troubleshooting Network Layer Troubleshooting



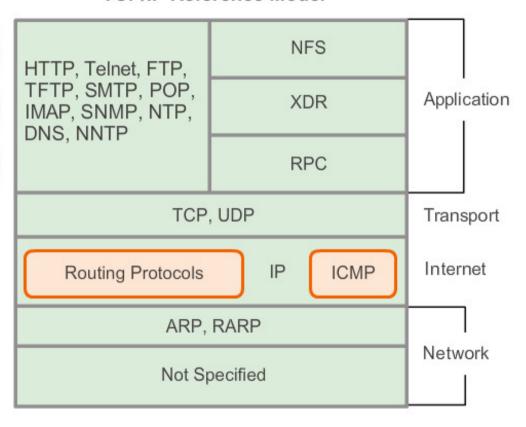
Symptoms and Causes of Network Troubleshooting Troubleshooting


Transport Layer Troubleshooting – ACLs

Common ACL Misconfigurations

- Selection of traffic flow
- Order of ACL entries
- Implicit deny all
- Address and IPv4 wildcard masks
- Selection of transport layer protocol
- Source and destination ports
- Use of the established keyword
- Uncommon protocols

Symptoms and Causes of Network Troubleshooting Transport Layer Troubleshooting – NAT for IPv4

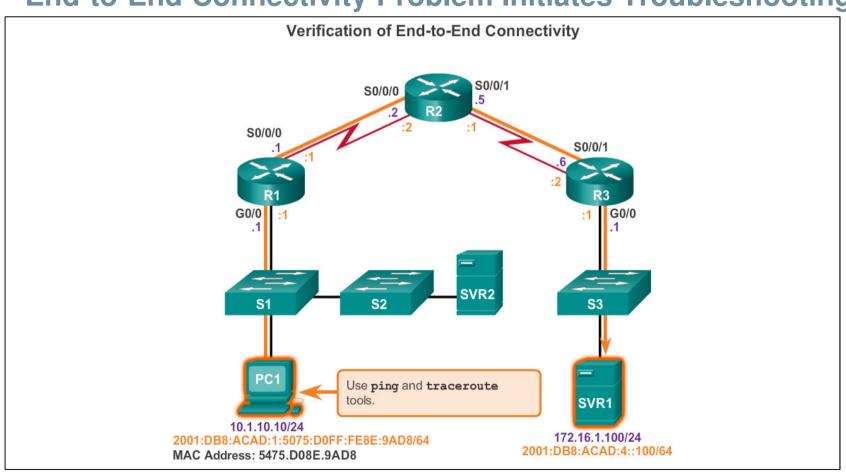


OSI Reference Model

Application Presentation Session Transport 3 Network Data Link Physical

TCP/IP Reference Model

Troubleshooting IP Connectivity Components of Troubleshooting End-to-End Connectivity


When there is no end-to-end connectivity, and the administrator chooses to troubleshoot with a bottom-up approach, these are common steps the administrator can take:

- **Step 1**. Check physical connectivity at the point where network communication stops, including cables and hardware. The problem might be with a faulty cable or interface, or involve misconfigured or faulty hardware.
- **Step 2**. Check for duplex mismatches.
- **Step 3**. Check data link and network layer addressing on the local network. This includes IPv4 ARP tables, IPv6 neighbor tables, MAC address tables, and VLAN assignments.

- **Step 4**. Verify that the default gateway is correct.
- **Step 5**. Ensure that devices are determining the correct path from the source to the destination. Manipulate the routing information if necessary.
- **Step 6**. Verify that the transport layer is functioning properly. Telnet can also be used to test transport layer connections from the command line.
- Step 7. Verify that there are no ACLs blocking traffic.
- **Step 8**. Ensure that DNS settings are correct. There should be an accessible DNS server.

Troubleshooting IP Connectivity End-to-End Connectivity Problem Initiates Troubleshooting

Step 1. Verify the Physical Layer

```
R1# show interfaces gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
  Hardware is CN Gigabit Ethernet, address is
  d48c.b5ce.a0c0(bia d48c.b5ce.a0c0)
  Internet address is 10.1.10.1/24
  <output omitted>
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total
  output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     85 packets input, 7711 bytes, 0 no buffer
     Received 25 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 watchdog, 5 multicast, 0 pause input
     10112 packets output, 922864 bytes, 0 underruns
     0 output errors, 0 collisions, 1 interface resets
     11 unknown protocol drops
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier, 0 pause output
     O output buffer failures, O output buffers swapped out
R1#
```


Duplex configuration guidelines:

- Point-to-point Ethernet links should always run in full-duplex mode.
- Half-duplex is not common anymore and mostly encountered if hubs are used.
- Autonegotiation of speed and duplex is recommended.
- If autonegotiation does not work, manually set the speed and duplex on both ends.
- Half-duplex on both ends performs better than a duplex mismatch.

Troubleshooting IP Connectivity Step 3. Verify Layer 2 and Layer 3 Addressing on the Local Network

IPv4:

- arp command (PC)
- show mac addresstable command (router)

Verify the IPv4 Default Gateway

```
R1# show ip route
<output omitted>
Gateway of last resort is 192.168.1.2 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 192.168.1.2
```

```
C:\Windows\system32> route print
<output omitted>

Network Destination Netmask Gateway 10.1.10.100 11
```

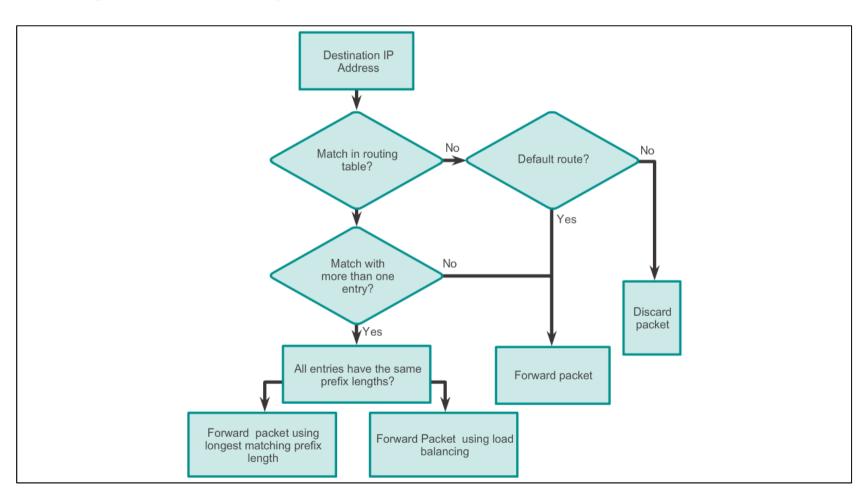
IPv6:

- netsh interface ipv6
 show neighbor command
 (PC)
- show ipv6 neighbors

Verify the IPv6 Default Gateway

```
PC1> ipconfig
Windows IP Configuration
Connection-specific DNS Suffix:
IPv6 Address....:
2001:db8:acad:1:5075:d0ff:fe8e:9ad8
Link-local IPv6 Address...: fe80::5075:d0ff:fe8e:9ad8%13
IPv4 Address....: 10.1.1.100
Subnet Mask....: 255.255.255.0
Default Gateway...: fe80::1
10.1.10.1
```


Verify the IPv4 Default Gateway


```
R1# show ip route
<output omitted>
Gateway of last resort is 192.168.1.2 to network 0.0.0.0
S* 0.0.0.0/0 [1/0] via 192.168.1.2
```

```
C:\Windows\system32> route print
<output omitted>

Network Destination Netmask 0.0.0.0 0.0.0.0 Uniterface Metric 10.1.10.100 11
```

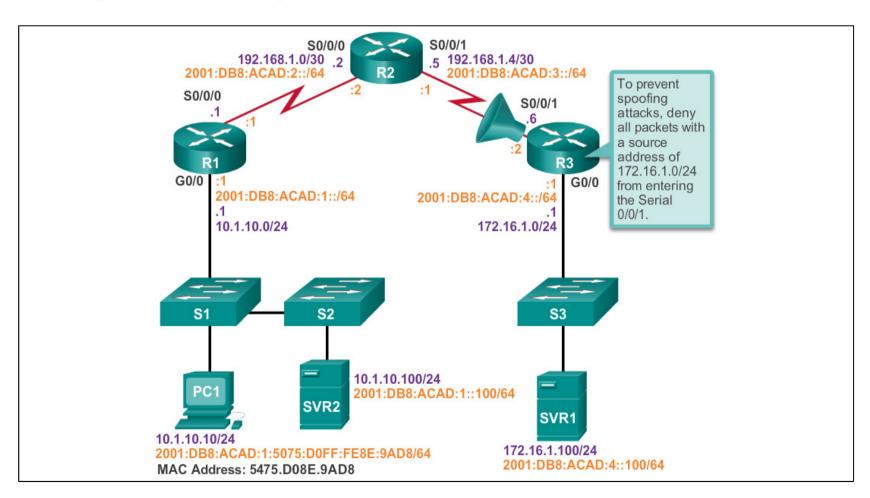
Verify the IPv6 Default Gateway

Troubleshooting IP Connectivity Step 5. Verify Correct Path

Troubleshooting IP Connectivity Step 6. Verify the Transport Layer

Successful Telnet Connection Over IPv4

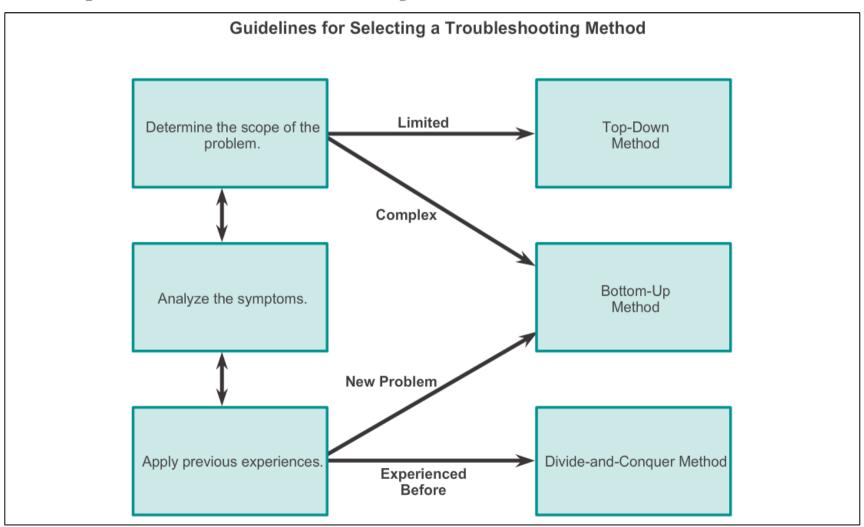
PC1> telnet 2001:DB8:172:16::100 HQ#


Successful Telnet Connection Over IPv6

R1# telnet 2001:db8:acad:3::2
Trying 2001:DB8:ACAD:3::2 ... Open

User Access Verification

Password:
R3>


Troubleshooting IP Connectivity Step 7. Verify ACLs

Troubleshooting IP Connectivity Step 8. Verify DNS

```
R1 (config) # ip host ipv4-server 172.16.1.100
R1# ping ipv4-server
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.1.100,
timeout is 2 seconds:
11111
Success rate is 100 percent (5/5),
round-trip min/avg/max = 52/56/64 ms
R1#
R1(config) # ipv6 host ipv6-server 2001:db8:acad:4::100
R1# ping ipv6-server
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:ACAD:4::100,
timeout is 2 seconds:
11111
Success rate is 100 percent (5/5), round-trip min/avg/max =
52/54/56 ms
R1#
```

Chapter 9: Summary

Cisco | Networking Academy® | Mind Wide Open™