

Note for Instructors

- These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.
- Thanks must go out to Rick Graziani of Cabrillo College. His material and additional information was used as a reference in their creation.
- If anyone finds any errors or omissions, please let me know at:
 - tdame@stclaircollege.ca.

CCNA1-2

"Best Effort" Delivery (Unreliable)

- *Unreliable* means simply that IP does not have the capability to manage and recover from undelivered or corrupt packets.
- Since protocols at other layers can manage reliability, IP is allowed to function very efficiently at the Network Layer.

v1-11 Chaptei

Media Independent

- Not concerned with the physical medium.
- Operates independent of the layers that handle the physical medium that carries the packet.

Chapter 5

1-12

Media Independent

 Is concerned with the size of the packet or Maximum Transmission Unit (MTU).

- The MTU is established as part of the communication between the Data Link and Network Layers.
- Fragmentation:
 - At times, an intermediary device (router) will need to split up a packet when forwarding it from one media to a media with a smaller MTU.

CCNA1-13

Chapter 5

Media Independent

- Copper Ethernet: MTU = 1,518 bytes.
- Copper Serial: Frame Relay MTU = 512 bytes.
- Optical Fiber: ATM MTU = 17,966 bytes.
- Wireless: 802.11 MTU = 2272 bytes.

CCNA1-14

Performance

- Large numbers of hosts on a single network:
 - Actual Data
 - Overhead
- A big part of the overhead is broadcasts.

- In this context, each network is called a broadcast domain.
- Switches forward broadcasts to each device connected to a switch port.
- If we can reduce broadcast overhead, it would improve performance on the network.

IA1-23 Chapter 5

Performance

- Routers block broadcasts unless specifically configured to forward them.
- Replacing the switch in the diagram with a router, creates two

separate IP sub-networks and two broadcast domains.

Broadcasts are now contained within each network.

CCNA1-24

Dividing Networks from Networks

- There is a direct relationship, bit for bit, between the IP Address and it's associated subnet mask.
 - Any subnet mask bit that is a 1 means that the associated address bit belongs to the network number.
 - Any subnet mask bit that is a 0 means that the associated address bit belongs to the host number.

IP Address	192. 168.		1.	2
Subnet Mask	255.	255.	255.	0
Binary IP Address	11000000	10101000	0000001	00000010
Binary Subnet Mask	11111111	11111111	11111111	00000000

CNA1-31 Chapter 5

IP Addressing - The Subnet Mask

- There are two methods of expressing a subnet mask.
 - The traditional method is to use the decimal value of the 1 bits that apply to the network.
 - 192.168.1.2 255.255.255.0
 - This method is used for Classful Routing.
 - The new method is known as IP Prefix or CIDR.
 - Simply follow the IP address with a slash (/) and the number of bits that make up the network portion.
 - The remainder of the 32 bits are for the host number.
 - 192.168.1.2 / 24
 - This method indicates Classless Routing or Classless Interdomain Routing (CIDR).

CCNA1-32

Ì					
	Layer 2 Destination	Layer 2 Source	Layer 3 Destination	Layer 3 Source	
	B111	A222	192.168.4.10	192.168.1.10	

 Router B knows that the exit port is a serial interface.

NOW what happens?

Since the exit interface is a serial interface, NOT an Ethernet interface, Router B does not need the Layer 2 address for the next hop.

Remember, serial interfaces are like a pipe – one way in and one way out.

Chapter 5

Layer 2 Source Layer 3 Source A222 192.168.1.10

- When the interface is a point-topoint serial connection, the routing table process does not even look at the next-hop IP address.
- Router B now encapsulates the IP packet into the proper data link frame, using the proper serial encapsulation (HDLC, PPP, etc.).

Ì	7 3 7 19 = 3.13. = 13 = 13.			
	Layer 2 Destination	Layer 2 Source	Layer 3 Destination	Layer 3 Source
	FFFF	B222	192.168.4.10	192.168.1.10

- Router C realizes that this destination IP address is on the same network as one of its interfaces and it can send the packet directly to the destination and not another router.
- Since the exit interface is on an directly connected Ethernet network, Router C must obtain the destination's MAC address.

Chapter 5

1				
L	Layer 2	Layer 2	Layer 3	Layer 3
	Destination	Source	Destination	Source
Ш	Destination	Jource	Destination	Source
	FFFF	B222	192.168.4.10	192.168.1.10

- Router C looks in a table of IP address to MAC address for all connected networks.
- If the entry was not in the table, Router C would need to send a query out fa0/0 that says, "What is the MAC address for this IP address?"
- Host Y would send back a reply that says, "This is the MAC address that matches the IP Address you sent."

IP Packets: Carrying Data End to End

Step	Layer 2 Destination	Layer 2 Source	Layer 3 Destination	Layer 3 Source
Host X to Router A	A111	H111	192.168.4.10	192.168.1.10
Router A to Router B	B111	A222	192.168.4.10	192.168.1.10
Router B to Router C	FFFF	B222	192.168.4.10	192.168.1.10
Router C to Host Y	H222	C222	192.168.4.10	192.168.1.10

NOTICE THAT THE SOURCE AND DESTINATION IP ADDRESSES REMAIN UNCHANGED!!!

Chapter 5

1-52

Destination Network - Routing Table Entries

```
Gateway of last resort is 192.168.2.2 to network 0.0.0.0

10.0.0.0/24 is subnetted, 2 subnets

R 10.1.1.0 [120/1] via 192.168.2.2, 00:00:08, FastEthernet 0/0

R 10.1.2.0 [120/1] via 192.168.2.2, 00:00:08, FastEthernet 0/0

C 192.168.1.0/24 is directly connected, FastEthernet 0/0

S* 0.0.0.0/0 [1/0] via 192.168.2.2
```

- The hierarchical nature of Layer 3 addressing means that...
 - One route entry could refer to a large general network.
 - Another entry could refer to a subnet of that same network.
 - When forwarding a packet, the router will select the most specific route.

CCNA1-57 Chapter 5

Destination Network - Routing Table Entries

- The default route in a routing table performs much the same function as a default gateway in a PC.
 - If a route for a packet cannot be found in the routing table, and a default route is present, that route will be used to forward the packet.

CCNA1-58 Chapter 5

• Changes to the topology require static route changes.

CCNA1-65

