Chapter 2: Static Routing
Chapter 2 - Sections & Objectives

2.1 Static Routing Implementation

• Explain the advantages and disadvantages of static routing.
• Explain the purpose of different types of static routes.

2.2 Configure Static and Default Routes

• Configure IPv4 and IPv6 static routes by specifying a next-hop address.
• Configure IPv4 and IPv6 default routes.
• Configure a floating static route to provide a backup connection.
• Configure IPv4 and IPv6 static host routes that direct traffic to a specific host.

2.3 Troubleshoot Static and Default Route Issues

• Explain how a router processes packets when a static route is configured.
• Troubleshoot common static and default route configuration issues.
2.1 Static Routing Implementation
Static Routing

Reach Remote Networks

A router can learn about remote networks in one of two ways:

• **Manually** - Remote networks are manually entered into the route table using static routes.

• **Dynamically** - Remote routes are automatically learned using a dynamic routing protocol.
Static Routing

Why Use Static Routing?

Static routing provides some advantages over dynamic routing, including:

- Static routes are not advertised over the network, resulting in better security.
- Static routes use less bandwidth than dynamic routing protocols, no CPU cycles are used to calculate and communicate routes.
- The path a static route uses to send data is known.

<table>
<thead>
<tr>
<th>Configuration Complexity</th>
<th>Dynamic Routing</th>
<th>Static Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generally independent of the network size</td>
<td>Increases with network size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topology Changes</th>
<th>Dynamic Routing</th>
<th>Static Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automatically adapts to topology changes</td>
<td>Administrator intervention required</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scaling</th>
<th>Dynamic Routing</th>
<th>Static Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suitable for simple and complex topologies</td>
<td>Suitable for simple topologies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security</th>
<th>Dynamic Routing</th>
<th>Static Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less secure</td>
<td>More secure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resource Usage</th>
<th>Dynamic Routing</th>
<th>Static Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uses CPU, memory, link bandwidth</td>
<td>No extra resources needed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictability</th>
<th>Dynamic Routing</th>
<th>Static Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Route depends on the current topology</td>
<td>Route to destination is always the same</td>
</tr>
</tbody>
</table>
Static Routing

When to Use Static Routes

Static routing has three primary uses:

- Providing ease of routing table maintenance in smaller networks.
- Routing to and from stub networks. A stub network is a network accessed by a single route, and the router has no other neighbors.
- Using a single default route to represent a path to any network that does not have a more specific match with another route in the routing table.
Types of Static Routes

Static Route Applications

Static Routes are often used to:

- Connect to a specific network.
- Provide a Gateway of Last Resort for a stub network.
- Reduce the number of routes advertised by summarizing several contiguous networks as one static route.
- Create a backup route in case a primary route link fails.
Types of Static Routes

Standard Static Route

Connecting to a Stub Network

There is no need to use a dynamic routing protocol with R1 to reach 172.16.3.0/24. I can simply use a static route to reach the stub network.
Types of Static Routes

Default Static Route

- A default static route is a route that matches all packets.
- A default route identifies the gateway IP address to which the router sends all IP packets that it does not have a learned or static route.
- A default static route is simply a static route with 0.0.0.0/0 as the destination IPv4 address.
Types of Static Routes

Summary Static Route

Using One Summary Static Route

I can represent all four networks:
- 172.20.0.0/16
- 172.21.0.0/16
- 172.22.0.0/16
- 172.23.0.0/16

Using a single summary route:
- 172.20.0.0/14
Types of Static Routes
Floating Static Route

I prefer to reach the HQ router using the private WAN link.

However, if that link ever fails, I can use a floating static route connecting to the Internet as a backup.
6.2 Configure Static and Default Routes
Configure IPv4 Static Routes

`ip route` Command

```bash
Router(config)# ip route network-address subnet-mask {ip-address | exit-intf}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>network-address</td>
<td>Destination network address of the remote network to be added to the routing table</td>
</tr>
</tbody>
</table>
| subnet-mask | • Subnet mask of the remote network to be added to the routing table
 • The subnet mask can be modified to summarize a group of networks |
| ip-address | • Commonly referred to as the next-hop router’s IP address
 • Typically used when connecting to a broadcast media (i.e., Ethernet)
 • Commonly creates a recursive lookup |
| exit-intf | • Use the outgoing interface to forward packets to the destination network
 • Also referred to as a directly attached static route
 • Typically used when connecting in a point-to-point configuration |
| distance | • (Optional) Configures an administrative distance
 • Typically used to configure a floating static route |
Configure IPv4 Static Routes

Next-Hop Options

The next hop can be identified by an IP address, exit interface, or both. How the destination is specified creates one of the three following route types:

- **Next-hop route** - Only the next-hop IP address is specified.
- **Directly connected static route** - Only the router exit interface is specified.
- **Fully specified static route** - The next-hop IP address and exit interface are specified.
Configure IPv4 Static Routes

Configure a Next-Hop Static Route

```
R1(config)# ip route 172.16.1.0 255.255.255.0 172.16.2.2
R1(config)# ip route 192.168.1.0 255.255.255.0 172.16.2.2
R1(config)# ip route 192.168.2.0 255.255.255.0 172.16.2.2
R1(config)#
```
Configure IPv4 Static Routes

Configure Directly Connected Static Route

```
R1(config)# ip route 172.16.1.0 255.255.255.0 s0/0/0
R1(config)# ip route 192.168.1.0 255.255.255.0 s0/0/0
R1(config)# ip route 192.168.2.0 255.255.255.0 s0/0/0
R1(config)#
```
Configure IPv4 Static Routes

Configure a Fully Specified Static Route

Configure Directly Attached Static Routes on R1

R1(config)# ip route 172.16.1.0 255.255.255.0 s0/0/0
R1(config)# ip route 192.168.1.0 255.255.255.0 s0/0/0
R1(config)# ip route 192.168.2.0 255.255.255.0 s0/0/0
R1(config)#
Configure IPv4 Static Routes

Verify a Static Route

R1# show ip route static | begin Gateway
Gateway of last resort is not set

 172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
S 172.16.1.0/24 [1/0] via 172.16.2.2
S 192.168.1.0/24 [1/0] via 172.16.2.2
S 192.168.2.0/24 [1/0] via 172.16.2.2
R1#

R1# show ip route 192.168.2.1
Routing entry for 192.168.2.0/24
Known via "static", distance 1, metric 0
Routing Descriptor Blocks:
 * 172.16.2.2
 Route metric is 0, traffic share count is 1
R1#

R1# show running-config | section ip route
ip route 172.16.1.0 255.255.255.0 172.16.2.2
ip route 192.168.1.0 255.255.255.0 172.16.2.2
ip route 192.168.2.0 255.255.255.0 172.16.2.2
R1#
Configure IPv4 Static Routes

Default Static Route

Default Static Route Syntax

```
Router(config)#ip route 0.0.0.0 0.0.0.0 {ip-address | exit-intf}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0 0.0.0.0</td>
<td>Matches any network address.</td>
</tr>
<tr>
<td>ip-address</td>
<td>• Commonly referred to as the next-hop router’s IP address.</td>
</tr>
<tr>
<td></td>
<td>• Typically used when connecting to a broadcast media (i.e., Ethernet).</td>
</tr>
<tr>
<td></td>
<td>• Commonly creates a recursive lookup.</td>
</tr>
<tr>
<td>exit-intf</td>
<td>• Use the outgoing interface to forward packets to the destination network.</td>
</tr>
<tr>
<td></td>
<td>• Also referred to as a directly attached static route.</td>
</tr>
<tr>
<td></td>
<td>• Typically used when connecting in a point-to-point configuration.</td>
</tr>
</tbody>
</table>
Configure IPv4 Static Routes

Configure a Default Static Route

R1(config)# ip route 0.0.0.0 0.0.0.0 172.16.2.2
R1(config)#
Configure IPv4 Static Routes

Verify a Default Static Route

```javascript
R1# show ip route static
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP, D - EIGRP, E - EIGRP external, O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA externa, N2 - OSPF NSSA external, E1 - EIGRP external ty, E2 - EIGRP external ty, E1 - IS-IS external, E2 - IS-IS external, E3 - IS-IS external, E4 - IS-IS external

Gateway of last resort is 172.16.2.2 to network 0.0.0.0
2
1
S* 0.0.0.0/0 [1/0] via 172.16.2.2
R1#
```
Configure IPv6 Static Routes

The **ipv6 route** Command

IPv6 Command Syntax

```
Router(config)# ipv6 route ipv6-prefix/prefix-length
     {ipv6-address | exit-intf}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6-prefix</td>
<td>Destination network address of the remote network to be added to the routing table.</td>
</tr>
<tr>
<td>prefix-length</td>
<td>Prefix length of the remote network to be added to the routing table.</td>
</tr>
<tr>
<td>ipv6-address</td>
<td>- Commonly referred to as the next-hop router’s IP address.
- Typically used when connecting to a broadcast media (i.e., Ethernet).
- Commonly creates a recursive lookup.</td>
</tr>
<tr>
<td>exit-intf</td>
<td>- Use the outgoing interface to forward packets to the destination network.
- Also referred to as a directly attached static route.
- Typically used when connecting in a point-to-point configuration.</td>
</tr>
</tbody>
</table>
Configure IPv6 Static Routes

Next-Hop Options

- **Next-hop static IPv6 route** - Only the next-hop IPv6 address is specified

- **Directly connected static IPv6 route** - Only the router exit interface is specified

- **Fully specified static IPv6 route** - The next-hop IPv6 address and exit interface are specified
Configure IPv6 Static Routes

Configure a Next-Hop Static IPv6 Route

```
R1(config)# ipv6 route 2001:DB8:ACAD:2::/64 2001:DB8:ACAD:4::2
R1(config)# ipv6 route 2001:DB8:ACAD:5::/64 2001:DB8:ACAD:4::2
R1(config)# ipv6 route 2001:DB8:ACAD:3::/64 2001:DB8:ACAD:4::2
R1(config)#
```
Configure IPv6 Static Routes

Directly Connected Static IPv6 Route

```
R1 (config) # ipv6 route 2001:DB8:ACAD:2::/64 s0/0/0
R1 (config) # ipv6 route 2001:DB8:ACAD:5::/64 s0/0/0
R1 (config) # ipv6 route 2001:DB8:ACAD:3::/64 s0/0/0
R1 (config) #
R1#`
```
Configure IPv6 Static Routes

Fully Specified Static IPv6 Route

Configure Fully Specified Static IPv6 Routes on R1

IPv6 link-local addresses

```
R1(config)# ipv6 route 2001:db8:acad:2::/64 fe80::2
% Interface has to be specified for a link-local nexthop
R1(config)# ipv6 route 2001:db8:acad:2::/64 s0/0/0 fe80::2
R1(config)#
```
In addition to `ping` and `traceroute`, commands to verify static routes include:

- `show ipv6 route`
- `show ipv6 route static`
- `show ipv6 route network`
Configure IPv6 Default Routes

Default Static IPv6 Route

Default Static IPv6 Route Syntax

```
Router(config)# ipv6 route ::/0 {ipv6-address | exit-intf}
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>::/0</td>
<td>Matches any IPv6 prefix regardless of prefix length.</td>
</tr>
</tbody>
</table>
| ipv6-address | - Commonly referred to as the next-hop router's IPv6 address.
| | - Typically used when connecting to a broadcast media (i.e., Ethernet).
| | - Commonly creates a recursive lookup. |
| exit-intf | - Use the outgoing interface to forward packets to the destination network.
| | - Also referred to as a directly attached static route.
| | - Typically used when connecting in a point-to-point configuration. |
Configure IPv6 Default Routes

Configure a Default Static IPv6 Route

```
R1(config)# ipv6 route ::/0 2001:DB8:ACAD:4::2
R1(config)#
```
Configure IPv6 Default Routes

Verify a Default IPv6 Static Route

Verifying the Routing Table of R1

```
R1#show ipv6 route static
IPv6 Routing Table - default - 6 entries
Codes: C - Connected, L - Local, S - Static,
U - Per-user Static route
B - BGP, R - RIP, I1 - ISIS L1
IA - ISIS interarea, IS - ISIS
D - EIGRP, EX - EIGRP external
N - ND Default, NDp - ND Prefix,
DCE - Destination, NDr - Redirect
O - OSPF intra, OI - OSPF Inter, OE1 - OSPF ext 1,
OE2 - OSPF ext 2
ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
S ::/0 [1/0]
via 2001:DB8:ACAD:4::2
R1#
```
Configure IPv6 Default Routes

Floating Static Routes

Floating static routes have an administrative distance greater than the administrative distance of another static route or dynamic routes.

- The static route “floats” and is not used when the route with the better administrative distance is active.
- If the preferred route is lost the floating static route can take over.
Configure IPv6 Default Routes

Configure an IPv4 Floating Static Route

```
R1(config)# ip route 0.0.0.0 0.0.0.0 172.16.2.2
R1(config)# ip route 0.0.0.0 0.0.0.0 10.10.10.2 5
R1(config)#
```
To test a floating static route:

- Use the `show ip route` command to verify that the routing table is using the default static route.
- Use the `traceroute` command to follow the traffic flow out the primary route.
- Disconnect the link or shutdown the primary interface(s). In the curriculum example the serial interfaces on R2 are shutdown.
- Use a `show ip route` command to verify that the routing table is using the floating static route.
- Use a `traceroute` command to follow the traffic flow out the backup route.
Configure Static Host Routes

Automatically Installed Host Routes

A host route is an IPv4 address with a 32-bit mask or an IPv6 address with a 128-bit mask.

- Automatically installed when an IP address is configured on the router.
- The local routes are marked with “L” in the output of the routing table.
Configure Static Host Routes

Configure IPv4 and IPv6 Static Host Routes

```
Branch(config)# ip route 209.165.200.238 255.255.255.255 198.51.100.2
Branch(config)# ipv6 route 2001:db8:acad:2::99/128 2001:db8:acad:1::2
Branch(config)# end
Branch# show ip route | begin Gateway
Gateway of last resort is not set

   198.51.100.0/24 is variably subnetted, 2 subnets, 2 masks
C  198.51.100.0/30 is directly connected, Serial0/0/0
L  198.51.100.1/32 is directly connected, Serial0/0/0
   209.165.200.0/32 is subnetted, 1 subnets
S  209.165.200.38 [1/0] via 198.51.100.2

Branch# show ipv6 route
<output omitted>
C  2001:DB8:ACAD:1::/64 [0/0]
   via Serial0/0/0, directly connected
L  2001:DB8:ACAD:1::1/128 [0/0]
   via Serial0/0/0, receive
S  2001:DB8:ACAD:2::99/128 [1/0]
   via 2001:DB8:ACAD:1::2
L  FF00::/8 [0/0]
   via Null0, receive
Branch#
```
Configure Static Host Routes

Configure IPv4 and IPv6 Static Host Routes

```
Branch(config)# no ipv6 route 2001:db8:acad:2::99/128 2001:db8:acad:1::2
Branch(config)# ipv6 route 2001:db8:acad:2::99/128 serial 0/0/0 fe80::2
Branch(config)# end
Branch# show ipv6 route
<output omitted>
```

```
S ::/0 [1/0]  
  via 2001:db8:acad:1::2
C 2001:db8:acad:1::/64 [0/0]  
  via Serial0/0/0, directly connected
L 2001:db8:acad:1:1/128 [0/0]  
  via Serial0/0/0, receive
S 2001:db8:acad:2::99/128 [1/0]  
  via fe80::2, Serial0/0/0
L FF00::/8 [0/0]  
  via Null0, receive
Branch#
```
6.2 Troubleshoot Static and Default Route Issues
Packet Processing with Static Routes

Static Routes and Packet Forwarding

Verify a Default Static Route
Troubleshoot IPv4 Static and Default Route Configuration

Troubleshoot a Missing Route

IOS troubleshooting commands include:

- **ping**
- **Extended ping** enables you to specify the source IP address for the ping packets.
- **traceroute**
- **show ip route**
- **show ip interface brief**
- **show cdp neighbors detail**
Packet Processing with Static Routes

Solve a Connectivity Problem

- Finding a missing (or misconfigured) route requires using the right tools in a methodical manner.

- Use the `ping` command to confirm the destination can’t be reached.

- A `traceroute` would also reveal the closest router (or hop) that fails to respond as expected. In this case, the router would then send an Internet Control Message Protocol (ICMP) destination unreachable message back to the source.

- The next step is to investigate the routing table using the `show ip route` command. Look for missing or misconfigured routes.

- Incorrect static routes are a common cause of routing problems.
2.4 Chapter Summary
• Explain the advantages and disadvantages of static routing.
• Explain the purpose of different types of static routes.
• Configure IPv4 and IPv6 static routes by specifying a next-hop address.
• Configure IPv4 and IPv6 default routes.
• Configure a floating static route to provide a backup connection.
• Configure IPv4 and IPv6 static host routes that direct traffic to a specific host.
• Explain how a router processes packets when a static route is configured.
• Troubleshoot common static and default route configuration issues.