

Note for Instructors

- These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.
- Thanks must go out to Rick Graziani of Cabrillo College. His material and additional information was used as a reference in their creation.
- If anyone finds any errors or omissions, please let me know at:
 - tdame@stclaircollege.ca.

CCNA2-2

Distance Vector Routing Protocols Introduction to **Distance Vector Routing Protocols** Interior Gateway Protocols Exterior Gateway Protocols Distance Vector Link State Path Vector Routing Protocols Routing Protocols IGRP Classful Classless RIPv2 EIGRP OSPFv2 IS-IS BGPv4 RIPng EIGRP for IPv6 OSPFv3 IS-IS for IPv6 BGPv4 for IPv6

Introduction to Distance Vector

- Routing Information Protocol (RIP):
 - Metric: Hop count.
 - A hop count greater than 15 means that the network is unreachable.
 - Periodic routing updates.
 - Entire routing table is broadcast every 30 seconds.
- Enhanced Interior Gateway Routing Protocol (EIGRP):
 - Cisco proprietary.
 - Composite metric: Bandwidth, delay, reliability and load.
 - It uses **Diffusing Update Algorithm (DUAL)** to calculate the shortest path.
 - No periodic updates.
 - Multicast updates only on a change in topology.

CCNA2-6 Chapter 4

Meaning of Distance Vector

- The routing protocol does not know the entire topology of a network.
- It only knows the routing information received from its neighbors.
 - A Distance Vector routing protocol does not have the knowledge of the entire path to a destination network.

CCNA2-7

Chapter 4

Meaning of Distance Vector

• A Distance Vector routing protocol does not have the knowledge of the entire path to a destination network.

Network 172.16.3.0/24:

- is 1 hop away (Distance)
- through interface s0/0/0 (Vector)

CCNA2-8

Operation of Distance Vector

• Periodic Updates:

- Some distance vector routing protocols periodically broadcast the entire routing table to each of its neighbors (RIP – every 30 seconds).
 - Inefficient: Updates consume bandwidth and router CPU resources.
 - Periodic updates are always sent even there have been no changes for weeks or months.
- Router is only aware of the:
 - Network addresses of its own interfaces.
 - Network addresses the neighbors running the same routing protocol.

CCNA2-9 Chapter 4

• Periodic Updates: R1 Update Timer expires | Neighbour of R1 | R1 is unaware of R3 and its networks | R3 and its networks | Neighbour of R1 | Neighbour of

- Mechanism for sending and receiving routing information.
- Mechanism for calculating the best paths and installing routes in the routing table.
- Mechanism for detecting and reacting to topology changes.

CCNA2-11

Routing Protocol Characteristics

- Other ways to compare routing protocols:
 - Time to convergence:
 - Faster the better.
 - Scalability:
 - How large a network the routing protocol can handle.
 - Classless or Classful:
 - Support VLSM and CIDR.
 - Resource usage:
 - Routing protocol usage of RAM, CPU utilization, and link bandwidth utilization.
 - Implementation and maintenance:
 - Level of knowledge of a network administrator.

CCNA2-15

Chapter 4

Comparing Routing Protocol Features

Distance Vector Routing Protocols			
Feature	RIPv1	RIPv2	EIGRP
Speed of Convergence	Slow	Slow	Fast
Scalability	Small	Small	Large
Supports VLSM	No	Yes	Yes
Resource Usage	Low	Low	Medium
Implementation	Simple	Simple	Complex

CCNA2-16

- Sends an update about network 10.3.0.0 out the Serial 0/0/0 interface with a metric of 1.
- Sends an update about network 10.2.0.0 out the Serial 0/0/1 interface with a metric of 1.

CCNA2-21

Chapter 4

- Sends an update about network 10.4.0.0 out the S0/0/0 interface with a metric of 1.
- Sends an update about network 10.3.0.0 out the Fa0/0 interface with a metric of 1.

CCNA2-22

- R1 Receives the update from R2 about network 10.3.0.0 and adds it to its routing table.
- R3 Receives the update from R2 about network 10.2.0.0 and adds it to its routing table.

CCNA2-23 Chapter

Initial Exchange of Routing Information

- R2 Receives the update from R1 about network 10.1.0.0 and adds it to its routing table.
- R2 Receives the update from R3 about network 10.4.0.0 and adds it to its routing table.

- Sends an update about networks 10.3.0.0 with a metric of 1 and 10.4.0.0 with a metric of 2 out the Serial 0/0/0 interface.
- Sends an update about networks 10.1.0.0 with a metric of 2 and 10.2.0.0 with a metric of 1 out the Serial 0/0/1 interface.

2-27 Chapter

- Sends an update about network 10.4.0.0 out the S0/0/0 interface with a metric of 1 AGAIN!
- When R2 receives the update, there is no change in information so the update is ignored.

CCNA2-28 Chapter 4

 R1 receives an update from R2 about network 10.4.0.0 (new) and adds it to its routing table.

CCNA2-29

CCNA2-30

Chapter 4

Chapter 4

and adds it to its routing table.

Defining a Routing Loop

- A routing loop is a condition in which a packet is continuously transmitted within a series of routers without ever reaching its intended destination network.
- The loop can be a result of:
 - Incorrectly configured static routes.
 - Incorrectly configured route redistribution.
 - Inconsistent routing tables not being updated because of slow convergence in a changing network.
- Distance vector routing protocols are simple in their implementation and configuration, but this comes at a price.
- Pure distance vector routing protocols suffer from possible routing loops.

CCNA2-43 Chapter 4

Implications of Routing Loops

- A routing loop can have a devastating effect on a network, resulting in degraded network performance or even network downtime.
 - Link bandwidth will be used for traffic looping back and forth between the routers.
 - A router's CPU will be burdened with useless packet forwarding.
 - Routing updates might get lost or not be processed in a timely manner, making the situation even worse.
 - Packets might get lost in black holes, never reaching their intended destinations.

CCNA2-44 Chapter 4

Routing Loop - Example

- Network 1 Fails.
- Router E sends an update to Router A.
- Router A stops routing packets to Network 1.

- But Routers B, C, and D continue to do so because they have not yet been informed about the failure.
- Router A sends out its update.
- Routers B and D stop routing to network1, (via Router A).
- However, Router C is still not updated. To router C, network 1 is still reachable via router B.

CCNA2-45

Routing Loop - Example

- Router C thinks network 1 is still 3 hops away.
- Sends a periodic update to Router D.

This update says:

A path to network 1 exists by way of Router B and network 1 is 4 hops away.

CCNA2-46

Chapter 4

- Router D routing table information for Network 1.
- Current path to Network 1
 - = Unreachable

Update from Router C:
 Network 1 is 4 hops by way of Router C

 Normally, Router D ignores this routing information because it usually has a better route (2 hops via Router A) but this route is now down.

CCNA2-47

Chapter 4

Routing Loop - Example

Router D
 changes its
 routing table to
 reflect this
 better, but
 incorrect
 information.

Network 1 is available by way of Router C (4 hops)

Router D propagates the information to Router A.

CCNA2-48

Routing Loop - Example

 Router A changes its routing table.

• Router A adds a new route to its routing table:

Network 1 is available by way of Router D (5 hops).

• Propagates the information to Routers B and E.

CCNA2-49

Chapter 4

Routing Loop - Example

 Router B and Router E change their routing tables.

- Router B now believes:
 - Network 1 is available by way of Router A (6 hops).
 "Wow! I was about to tell Router C that Network 1 was down, but now I have new information!"
 - Router B sends the incorrect information to Router C.

CCNA2-50

 Router C changes its routing table.

Router C still believes:

Network 1 is available by way of Router B

But now it believes its 7 hops instead of 3!

Propagates the incorrect information to Router D.

CCNA2-51

Chapter 4

Routing Loop - Example

- Here we go again!
- The routers keep sending data packets and updates!

• BUT.....

Router A thinks Network 1 is available via Router D.

Router D thinks Network 1 is available via Router C.

Router C thinks Network 1 is available via Router B.

Router B thinks Network 1 is available via Router A.

CCNA2-52

Routing Loop - Example

- Data packets destined for Network 1 get caught in a routing loop, from Routers A to D to C to B to A to D etc.
- As routing updates continue between the routers, the hop count gets greater - to infinity? (Not quite - we will see in a moment.)

CCNA2-53 Chapter 4

Count-to-Infinity Condition

- Count to infinity is a condition that exists when inaccurate routing updates increase the metric value to infinity for a network that is no longer reachable.
 - Each protocol defines infinity at a different value.
 - When the metric value exceeds the maximum value, and as each router receives this maximum metric, the network is then considered unreachable.

Split Horizon Rule

- Router 1 sends an update to Router 2 that Network A is available and Router 2 updates its routing table with the information.
- Router 2 recognizes a change in topology.
- This would normally trigger an update to neighbouring routers and cause a routing loop.
- With split horizon enabled, Router 2 realizes it received the information from Router 1 and does not send the update.

Cha

Would Split Horizon avoid the routing loop in our example? Network 1

- When Network 1 went down, Router E sent an update to Router A.
- Router A then sent an update to Routers B and D that Network
 1 was no longer available.
- Router C then sent an update to Router D that Network 1
 IS available.

CCNA2-60 Chapter 4

- Here is where split horizon comes in......
 - With Split Horizon disabled, Router D would send an update to Router A about the status of Network 1 and set the routing loop in motion.
 - With Split Horizon enabled, Router D does not send the update to Router A because it already received an update about the status of Network 1 from Router A.

CCNA2-61 Chapter

- Router D actually does send an update to Router A.
- This update has a metric of 16 which means that the route is unreachable and Router A ignores the update.
- When applied with split horizon, this deliberate "poisoning" of the route is called poison reverse.
 - Split Horizon with Poison Reverse is enabled by default.

CCNA2-62 Chapter 4

Distance Vector Routing Protocols Distance Vector Routing Protocols Today Interior Gateway Protocols Exterior Gateway Protocols Distance Vector Link State Path Vector Routing Protocols Routing Protocols Classful IGRP EGP Classless RIPv2 EIGRP OSPFv2 IS-IS BGPv4 IPv6 RIPng EIGRP for IPv6 OSPFv3 IS-IS for IPv6 BGPv4 for IPv6 CCNA2-65 Chapter 4

RIP and EIGRP Distance Vector Routing Protocols Feature RIPv2 **EIGRP** RIP For distance vector Speed of routing protocols, there Slow Slow Fast Convergence are really only two Scalability Small Small Large choices: RIP or EIGRP. Supports VLSM No Yes Yes Resource Usage Low Low Medium Implementation Simple Simple Complex • The decision about which routing protocol to use in a given situation is influenced by a number of factors, including Size of the network. Compatibility between models of routers. Administrative knowledge required. Chapter 4 CCNA2-66