

Chapter 6: Multiarea OSPF

Scaling Networks

Presentation_ID

© 2008 Cisco Systems, Inc. All rights reserved.

1

Chapter 6

- 6.0 Introduction
- 6.1 Multiarea OSPF
- 6.2 Configuring Multiarea OSPF
- 6.3 Summary

Chapter 6: Objectives

After completing this chapter, students will be able to:

- Explain why multiarea OSPF is used.
- Explain how multiarea OSPF uses link-state advertisements in order to maintain routing tables.
- Explain how OSPF established neighbor adjacencies in a multiarea OSPF implementation.
- Configure multiarea OSPFv2 in a routed network.
- Configure multiarea route summarization in a routed network.
- Verify multiarea OSPFv2 operations.

6.1 Multiarea OSPF Operation

© 2008 Cisco Systems, Inc. All rights reserved

Why Multiarea OSPF? Single-Area OSPF

Single-area OSPF is useful in smaller networks. If an area becomes too big, the following issues must be addressed:

- Large routing table (no summarization by default)
- Large link-state database (LSDB)
- Frequent SPF algorithm calculations

Why Multiarea OSPF? Multiarea OSPF

Multiarea OSPF requires a hierarchical network design and the main area is called the backbone area, or area 0, and all other areas must connect to the backbone area.

Why Multiarea OSPF? OSPF Two-Layer Area Hierarchy

Multiarea OSPF is implemented in a two-layer area hierarchy:

Backbone (transit) area

- Area whose primary function is the fast and efficient movement of IP packets.
- Interconnects with other OSPF area types.
- Called OSPF area 0, to which all other areas directly connect.

Regular (nonbackbone) area

- Connects users and resources.
- A regular area does not allow traffic from another area to use its links to reach other areas.

1 11 11

Why Multiarea OSPF? Types of OSPF Routers

Why Multiarea OSPF? Types of OSPF Routers (cont.)

Why Multiarea OSPF? Types of OSPF Routers (cont.)

cisco.

Why Multiarea OSPF? Types of OSPF Routers (cont.)

LSA Type	Description
1	Router LSA
2	Network LSA
3 and 4	Summary LSAs
5	AS External LSA
6	Multicast OSPF LSA
7	Defined for NSSAs
8	External Attributes LSA for Border Gateway Protocol (BGP)
9, 10, or 11	Opaque LSAs

Most common and covered in this course - 1 thru 5

OSPF Routing Tables and Route Types OSPF Routing Table Entries

- O Router (type 1) and network (type 2) LSAs describe the details within an area (the route is intra-area).
- O IA Summary LSAs appear in the routing table as IA (interarea routes)
- O E1 or OE 2 External LSAs external type 1 (E1) or external type 2 (E2) routes

OSPF Routing Tables and Route Types **OSPF** Routing Table Entries (cont.)

- O Router (type 1) and network (type 2) LSAs describe the details within an area (the route is intra-area)
- O IA Summary LSAs appear in the routing table as IA (interarea routes)
- O E1 or OE 2 External LSAs external type 1 (E1) or external type 2 (E2) routes

R1# show ipv6 route IPv6 Routing Table - default - 9 entries Codes:C - Connected, L - Local, S - Static, U-Per-user Static route B - BGP, R - RIP, H - NHRP, I1 - ISIS L1 12 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP EX - EIGRF external, ND-ND Default, NDp-ND Prefix, DCE-Destination NDr - Redirect, O-OSPF Intra, OI-OSPF Inter, OE1-OSPF ext 1 OE2 - OSFF ext 2, ON1 - OSFF NSSA ext 1, ON2 - OSFF NSSA ext 2 OE2 ::/0 [110/1], tag 10 via FE80::2, Serial0/0/0 2001:DB8:CAFE:1::/64 [0/0] via GigabitEthernet0/0, directly connected 2001:DB8:CAFE:1::1/128 [0/0] via GigabitEthernet0/0, receive 2001:DB8:CAFE:2::/64 [110/648] via FE80::2, Serial0/0/0 2001:DB8:CAFE:3::/64 [110/1295] via FE80::2, Serial0/0/0 2001:DB8:CAFE:A001::/64 [0/0] via Serial0/0/0, directly connected 2001:DB8:CAFE:A001::1/128 [0/0] via Serial0/0/0, receive 2001:DB8:CAFE:A002::/64 [110/1294] via FE80::2, Serial0/0/0

OSPFv3 Routing Table Entries

 \mathbf{L} FF00::/8 [0/0] via Null0, receive

R1₩

Ċ.

 \mathbf{L}

Ô.

DI.

Ċ

 \mathbf{L}

Ó

1 1.1 1. CISCO

cisco.

OSPF Routing Tables and Route Types OSPF Route Calculation

- 1. All routers calculate the best paths to destinations within their area (intraarea) and add these entries to the routing table.
- 2. All routers calculate the best paths to the other areas within the internetwork (interarea) or type 3 and type 4 LSAs.
- All routers calculate the best paths to the external autonomous system (type 5) destinations. These are noted with either an O E1 or an O E2 route designator.

may of last resort is 192.168.10.2 to network 0.0.0.0
-
0.0.0.0/0 [110/1] via 192.168.10.2, 00:00:19, Serial0/0/0
10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
10.1.1.0/24 is directly connected, GigabitEthernet0/0
10.1.1.1/32 is directly connected, GigabitEthernet0/0
10.1.2.0/24 is directly connected, GigabitEthernet0/1
10.1.2.1/32 is directly connected, GigabitEthernet0/1
10.2.1.0/24 [110/648] via 192.168.10.2, 00:04:34, Serial0/0/0
192.168.1.0/24 [110/1295] via 192.168.10.2, 00:01:48, serial0/0/(
192.168.2.0/24 [110/1295] via 192.168.10.2, 00:01:48.serial0/0/(
192.168.10.0/24 is variably submetted. 3 subpets, 2 masks
192.168.10.0/30 is directly connected. Serial0/0/0
192.168.10.1/32 is directly connected, Serial0/0/0
192 168 10 4/30 [110/1294] wis 192 168 10 2 00:01:55 Serial0/0
192110011014/30 [110/1294] Via 1921100.1012/ 00.01133/3011410/0

- Calculate intra-area OSPF routes.
- Calculate best path to interarea OSPF routes.
- Calculate best path route to external non-OSPF networks.

6.2 Configuring Multiarea OSPF

© 2008 Cisco Systems, Inc. All rights reserved.

Configuring Multiarea OSPF Implementing Multiarea OSPF

Implementation Plan Steps

- 1. Gather the network requirements and parameters.
- 2. Define the OSPF parameters.
- 3. Configure OSPF.
- Verify OSPF.

Configuring Multiarea OSPF Configuring Multiarea OSPF

cisco.

Configuring Multiarea OSPF Configuring Multiarea OSPFv3

cisco.

OSPF Route Summarization OSPF Route Summarization

- R1 forwards a summary LSA to the core router C1.
- C1, in turn, forwards the summary LSA to R2 and R3.
- R2 and R3 then forward it to their respective internal routers.

OSPF Route Summarization Interarea and External Route Summarization

Occurs on ABRs and applies to routes from within each area

OSPF Route Summarization Interarea and External Route Summarization (cont.)

Specific to external routes that are injected into OSPF via route redistribution; ASBRs summarize external routes

OSPF Route Summarization Interarea Route Summarization

OSPF Route Summarization Interarea Route Summarization (cont.)

R1 # s	how ip route ospf begin Gateway	
atew	ay of last resort is not set	
	10.0.0/8 is variably subnetted, 5 subnet	ts, 2 masks
5	10.2.1.0/24 [110/648] via 192.168.10.2 Serial0/0/0	, 00:00:49,
AI C	192.168.1.0/24 [110/1295] via 192.168.10.	2, 00:00:49,
	Serial0/0/0	
AI O	192.168.2.0/24 [110/1295] via 192.168.10. Serial0/0/0	2, 00:00:49,
	192.168.10.0/24 is variably subnetted, 3 masks	Verify the R3 Routing Table Before Summarization
D	192.168.10.4/30 [110/1294] via 192.160	
p1#	00:00:49, Serial0/0/0	R3# show ip route ospf begin Gateway
		Gateway of last resort is not set
		10.0.0.0/24 is subnetted, 3 subnets
		0 IA 10.1.2.0 [110/1295] via 192.168.10.5, 00:27:14, Serial0/0/
		0 10.2.1.0 [110/648] via 192.168.10.5, 00:27:57, serial0/0/
		192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
		0 192.168.10.0/30 [110/1294] via 192.168.10.5, 00:27:57, Serial0/0/1
		R3#

cisco.

© 2008 Cisco Systems, Inc. All rights reserved

OSPF Route Summarization Calculating the Summary Route

Step 1	Step 2	Some Bits Are Different				
10.1.1.0	00001010.0000001.000000	01.00000000				
10.1.2.0	00001010.0000001.000000	10.0000000				
	First 22 Bits Match					
Step 3						
10.1.1.0 255.255.252.0	00001010.00000001.000000	00.00000000				
/22						
10.1.0.0/22 or 10.1.0.0 255.255.252.0						

OSPF Route Summarization Configuring Interarea Route Summarization

Verifying Multiarea OSPF Verifying Multiarea OSPF

The same verification commands are used to verify single-area OSPF and can be used to verify multiarea OSPF:

- show ip ospf neighbor
- show ip ospf
- show ip ospf interface

Commands specific to multiarea information include:

- show ip protocols
- show ip ospf interface brief
- show ip route ospf
- show ip ospf database

Note: For OSPFv3, substitute ip with ipv6.

Verifying Multiarea OSPF Verifying General Multiarea OSPF Settings

R1# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "ospf 10"
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Router ID 1.1.1.1
It is an area border router
Number of areas in this router is 2. 2 normal 0 stub 0 nssa
Maximum path: 4
Routing for Networks:
10.1.1.1 0.0.0.0 area 1
10.1.2.1 0.0.0.0 area 1
192.168.10.1 0.0.0.0 area 0
Routing Information Sources:
Gateway Distance Last Update
3.3.3.3 110 02:20:36
2.2.2.2 110 02:20:39
Distance: (default is 110)
R1#

R1# show	ip ospf	inter	interface brief						
Interface	PID	Area	IP Address/Mask	Cost	state	Nbrs	F/C		
Se0/0/0	10	0	192.168.10.1/30	64	P2P	1/1			
Gi0/1	10	1	10.1.2.1/24	1	DR	0/0			
Gi0/0	10	1	10.1.1.1/24	1	DR	0/0			
R1#									

Verifying Multiarea OSPF Verify the OSPF Routes

R1 # show ip route ospf begin Gateway Gateway of last resort is not set	
10.0.0.0/8 is variably subnetted, 5 subnets, 2 mas	sks
0 10.2.1.0/24 [110/648] via 192.168.10.2, 00:26:03	,
Seria	10/0/0
O IA 192.168.1.0/24 [110/1295] via 192.168.10.2, 00:26	:03,
Seria	10/0/0
O IA 192.168.2.0/24 [110/1295] via 192.168.10.2, 00:26	:03,
Seria	10/0/0
192.168.10.0/24 is variably subnetted,3 subnets,2 0 192.168.10.4/30 [110/1294] via 192.168.10.2, 00: Seria R1#	masks 26:03, 10/0/0

Verifying Multiarea OSPF Verifying the Multiarea OSPF LSDB

Verifying the OSPF LSDB on R1						
R1# show ip	ospf database	•				
	OSPF Router w	with I	D (1.1.1.1)	(Process I	(D 10)	
	Router	Link :	States (Area	0)		
Link ID	ADV Router	Age	Seq#	Checksum	Link count	
1.1.1.1	1.1.1.1	725	0x80000005	0x00F9B0	2	
2.2.2.2	2.2.2.2	695	0x80000007	0x003DB1	5	
3.3.3.3	3.3.3.3	681	0x80000005	0x00FF91	2	
	Summary N	et Lin	nk States (A)	rea 0)		
Link ID	ADV Router	Age	Seq#	Checksum		
10.1.1.0	1.1.1.1	725	0x80000006	0x00D155		
10.1.2.0	1.1.1.1	725	0x80000005	0x00C85E		
192.168.1.0	3.3.3.3	681	0x80000006	0x00724E		
192.168.2.0	3.3.3.3	681	0x80000005	0x006957		
Router Link States (Area 1)						
Link ID	ADV Router	Age	seq#	Checksum	Link count	
1.1.1.1	1.1.1.1	725	0x80000006	0x007D7C	2	
Summary Net Link States (Area 1)						
Link ID	ADV Router	Age	Seq#	Checksum		
10.2.1.0	1.1.1.1	725	0x80000005	0x004A9C		
192.168.1.0	1.1.1.1	725	0x80000005	0x00B593		
192.168.2.0	1.1.1.1	725	0x80000005	0x00AA9D		
192.168.10.0	1.1.1.1	725	0x80000005	0x00B3D0		
192.168.10.4	1.1.1.1	725	0x80000005	0x000E32		
R1#						

Verifying Multiarea OSPF Verifying Multiarea OSPFv3

R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
Router ID 1.1.1.1
Area border router
Number of areas: 2 normal, 0 stub, 0 nssa
Interfaces (Area 0):
Serial0/0/0
Interfaces (Area 1):
GigabitEthernet0/0
Redistribution:
None
R1#

R1# sh	юж іртб озр	f inter	face brief					
Interf	ace PID	Area	Intf	ID C	ost s	State 1	abra 1	F/C
Se0/0/	0 10	0	6	6	547 E	2P 3	1/1	
Gi0/0	10	1	3	1	. І	DR (0/0	
R1#								

Verifying Multiarea OSPF Verifying Multiarea OSPFv3 (cont.)

Verifying Multiarea OSPF Verifying Multiarea OSPFv3 (cont.)

Chapter 6: Summary Multiarea OSPF Summary

- Better choice for larger networks than single-area.
- Solves the issues of large routing table, large LSDB, and frequent SPF algorithm calculations.
- Main area is called the backbone area, or area 0.
- Recalculating the database is kept within an area.
- Four different types of OSPF routers:
 - Internal router
 - Backbone router
 - ABR
 - ASBR
- A router simply becomes an ABR when it has two network statements in different areas.

Chapter 6: Summary Multiarea OSPF Summary (cont.)

- Link-state advertisements (LSAs) are the building blocks of OSPF.
 - Type 1 LSAs are referred to as the router link entries.
 - Type 2 LSAs are referred to as the network link entries and are flooded by a DR.
 - Type 3 LSAs are referred to as the summary link entries and are created and propagated by ABRs.
 - A type 4 summary LSA is generated by an ABR only when an ASBR exists within an area.
 - Type 5 external LSAs describe routes to networks outside the OSPF autonomous system, originated by the ASBR and are flooded to the entire autonomous system.
- SPF tree is used to determine the best paths.
- OSPF routes in an IPv4 routing table are identified using the following descriptors: O, O IA, O E1, or O E2.

Chapter 6: Summary Multiarea OSPF Summary (cont.)

- The following example displays a multiarea OSPF configuration:
 R1(config) # router ospf 10
 - R1(config-router)# router-id 1.1.1.1
 - R1(config-router)# network 10.1.1.1 0.0.0.0 area 1
 - R1(config-router) # network 10.1.2.1 0.0.0.0 area 1
 - R1(config-router) # network 192.168.10.1 0.0.0.0 area 0
- Does not perform autosummarization, but can be manually configured using the summary-address address mask router configuration mode command

Chapter 6: Summary Multiarea OSPF Summary (cont.)

- The following commands are used to verify OSPF configurations:
 - show ip ospf neighbor
 - show ip ospf
 - show ip ospf interface
 - show ip protocols
 - show ip ospf interface brief
 - show ip route ospf
 - show ip ospf database

Cisco | Networking Academy[®] Mind Wide Open[™]