

Chapter 7: Enhanced Interior Gateway Protocol (EIGRP)

Scaling Networks

Presentation_ID

© 2008 Cisco Systems, Inc. All rights reserved

-1

Chapter 7

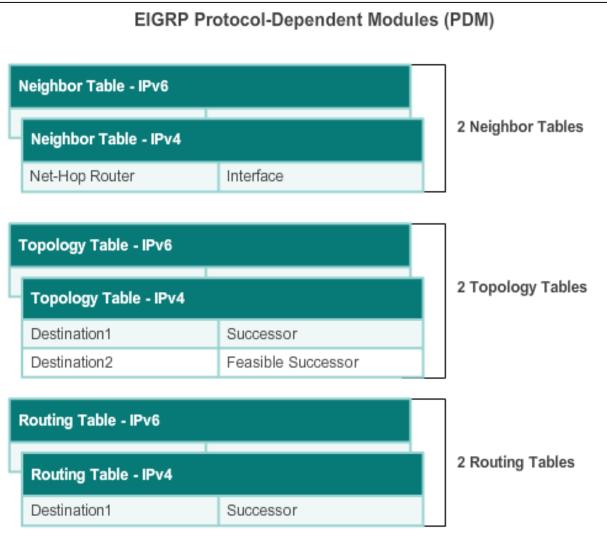
- 7.0 Introduction
- 7.1 Characteristics of EIGRP
- 7.2 Configuring EIGRP for IPv4
- 7.3 Operation of EIGRP
- 7.4 Configuration of EIGRP for IPv6
- 7.5 Summary

Chapter 7: Objectives

- Describe the features and operation of EIGRP.
- Examine the different EIGRP packet formats.
- Calculate the composite metric used by the Diffusing Update Algorithm (DUAL).
- Describe the concepts and operation of DUAL.
- Examine the commands to configure and verify basic EIGRP operations for IPv4 and IPv6.

7.1 Characteristics of EIGRP

© 2008 Cisco Systems, Inc. All rights reserved

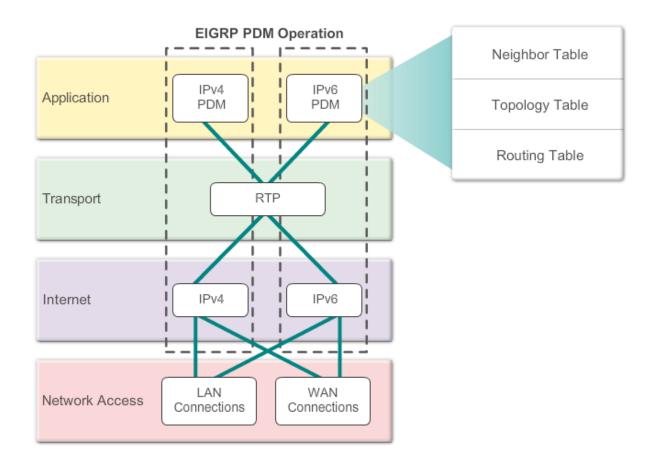

Basic Features of EIGRP Features of EIGRP

- Released in 1992 as a Cisco proprietary protocol.
- 2013 basic functionality of EIGRP released as an open standard.
- Advanced Distance Vector routing protocol.
- Uses the Diffusing Update Algorithm (DUAL) to calculate paths and back-up paths.
- Establishes Neighbor Adjacencies.
- Uses the Reliable Transport Protocol (RTP) to provide delivery of EIGRP packets to neighbors.
- Partial and Bounded Updates. Send updates only when there is a change and only to the routers that need the information.
- Supports Equal and Unequal Cost Load Balancing.

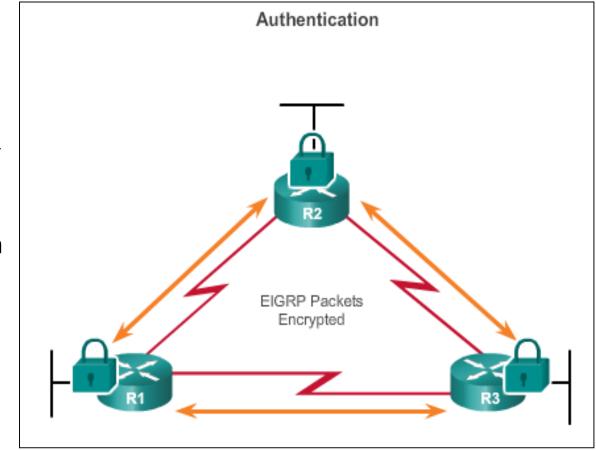
1 111 11

Basic Features of EIGRP Protocol Dependent Modules

PDM responsible for:


- Maintains neighbor and topology table
- Builds and • translates protocolspecific packets for DUAL
- Performs • redistribution functions to and from other routing protocols
- Redistribution of • functions learnt from other routing protocols

One neighbor table exists for each PDM, f


Basic Features of EIGRP Reliable Transport Protocol

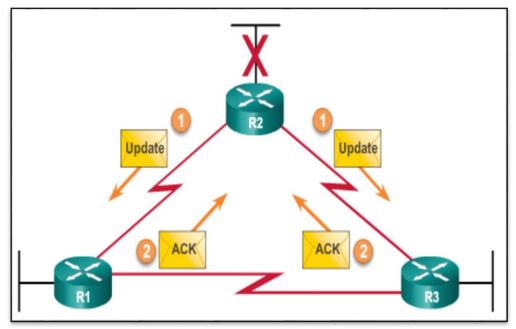
EIGRP Replaces TCP with RTP

Basic Features of EIGRP Authentication

- EIGRP can be configured to authenticate routing information.
- Ensures routers only accept updates from routers that have been configured with the correct authentication information.

Types of EIGRP Packets **EIGRP Packet Types**

Packet Type	Description
Hello	Used to discover other EIGRP routers in the network.
Acknowledgement	Used to acknowledge the receipt of any EIGRP packet.
Update	Convey routing information to known destinations.
Query	Used to request specific information from a neighbor router.
Reply	Used to respond to a query.

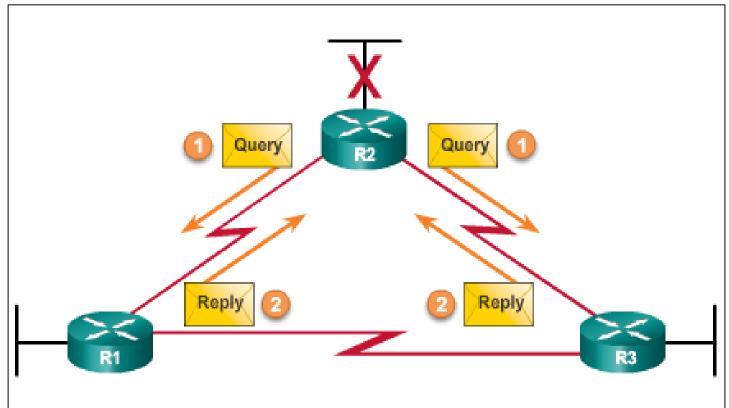

Types of EIGRP Packets EIGRP Hello Packets

- Used to discover EIGRP neighbors.
- Used to form and maintain EIGRP neighbor adjacencies.
- Sent as IPv4 or IPv6 multicasts.
- IPv4 multicast address 224.0.0.10.
- IPv6 multicast address FF02::A.
- Unreliable delivery.
- Sent every 5 seconds (every 60 seconds on low-speed NBMA networks).
- EIGRP uses a default Hold timer of three times the Hello interval before declaring neighbor unreachable.

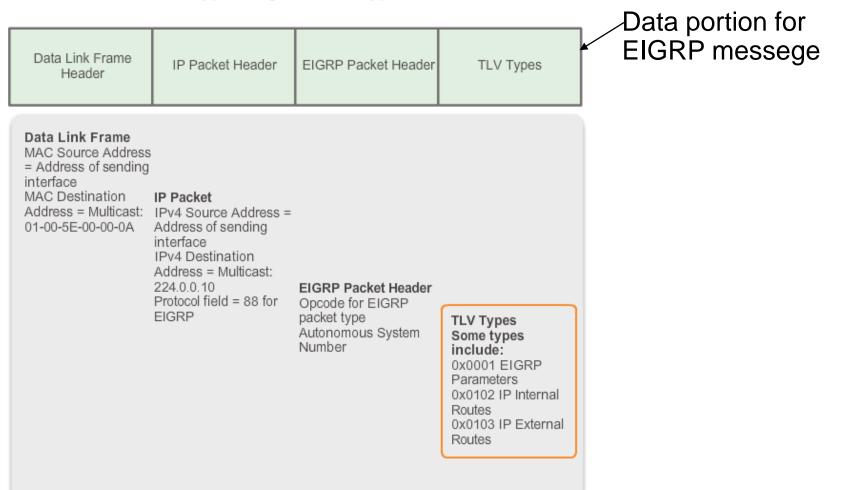
1 11 11

Types of EIGRP Packets EIGRP Update & Acknowledgement Packets

- Update packets are sent to propagate routing information, only when necessary.
- Sends Partial updates only contains information about route changes.
- Sends **Bounded** updatessent only to routers affected by the change.
- Updates use reliable delivery, therefore, require an acknowledgement.



Types of EIGRP Packets EIGRP Query and Reply Packets


- Used when searching for networks.
- Queries use reliable delivery, which can be multicast or unicast.
- Replies use reliable delivery.

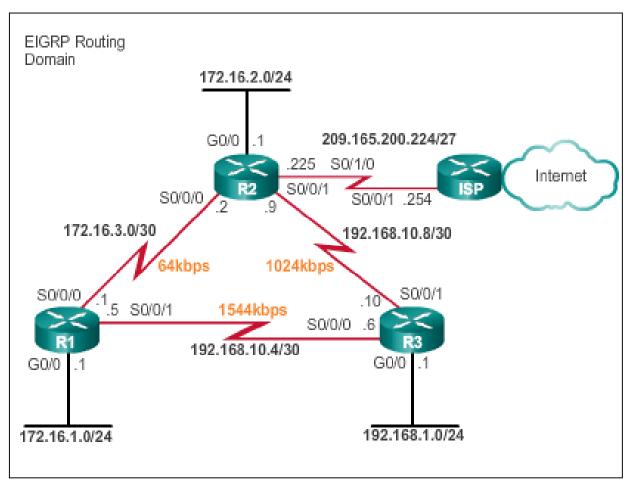


EIGRP Messages Encapsulating EIGRP Messages

Type/Length/Values Types

EIGRP Messages EIGRP Packet Header and TLV

7.2 Configuring EIGRP for IPv4



© 2008 Cisco Systems, Inc. All rights reserved

Configuring EIGRP with IPv4 EIGRP Network Topology

This course uses the topology that configures EIGRP with IPv4.

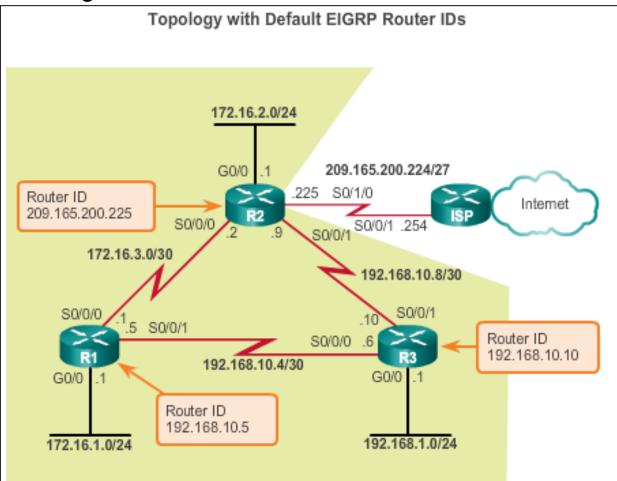
Configuring EIGRP with IPv4 Autonomous System Numbers

- The router eigrp autonomous-system command enables the EIGRP process.
- The autonomous system number is only significant to the EIGRP routing domain.
- The EIGRP autonomous system number is not associated with the Internet Assigned Numbers Authority (IANA) globally assigned autonomous system numbers used by external routing protocols.
- Internet Service Providers (ISPs) require an autonomous system number from IANA.
- ISPs often use the Border Gateway Protocol (BGP), which does use the IANA autonomous system number in its configuration.

Configuring EIGRP with IPv4 Router EIGRP Command

Router (config) # **router eigrp** autonomous-system

R1(config) #router eigrp 1 R1(config-router)#


To completely remove the EIGRP routing process from a device, use the no router eigrp autonomous-system command.

Configuring EIGRP with IPv4 EIGRP Router ID

Used in both EIGRP and OSPF routing protocols, the router ID's role is more significant in OSPF.

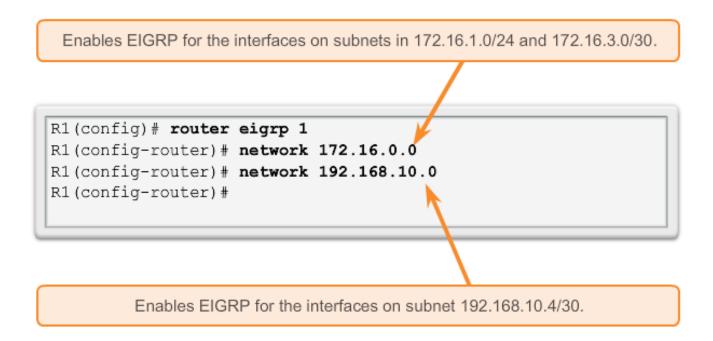
Configuring EIGRP with IPv4 Configuring the EIGRP Router ID

Configuring the EIGRP router ID

Router(config)# router eigrp autonomous-system
Router(config-router)# eigrp router-id ipv4-address

- The IPv4 loopback address can be used as the router ID.
- If the eigrp router-id value is NOT configured, the highest loopback address is selected as the router ID.
- Configuring a loopback interface

Router(config) # interface loopback number


Router(config-if) # ip addressipv4-address subnet-mask

Configuring EIGRP with IPv4 Network Command

- Enables any interface on this router that matches the network address in the network router configuration mode command to send and receive EIGRP updates.
- These networks are included in EIGRP routing updates.

Configuring EIGRP with IPv4 Network Command

The **eigrp log-neighbor-changes** router configuration mode

- On by default
- Displays changes in neighbor adjacencies
- Verifies neighbor adjacencies during configuration
- Indicates when any adjacencies have been removed

Configuring EIGRP with IPv4 The Network Command and Wildcard Mask

To configure EIGRP to advertise specific subnets only, use the wildcard-mask option with the network command.

```
Router(config-router) # network network
address [wildcard-mask]
```

- The wildcard mask is the inverse of the subnet mask.
- To calculate the wildcard mask, subtract the subnet mask from 255.255.255.255:

255.255.255.255

-- <u>255.255.255.252</u>

0. 0. 0. 3 wildcard mask

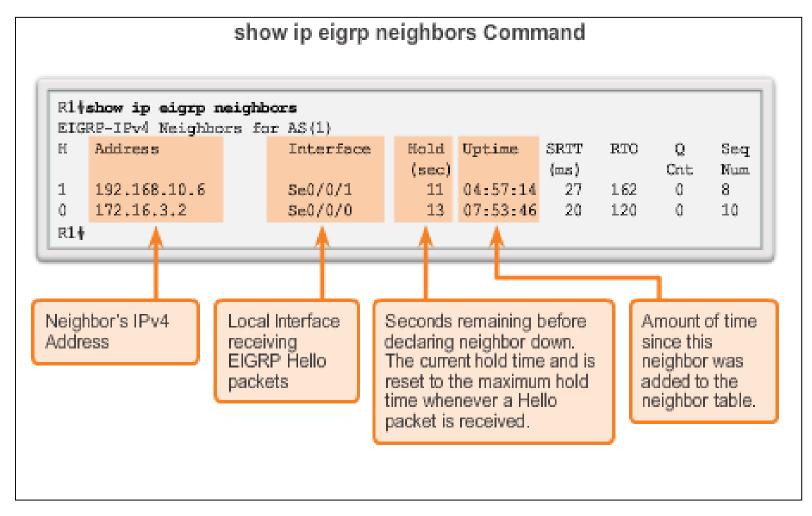
 Note: Some IOS versions also let you enter the subnet mask instead of a wildcard mask.

Configuring EIGRP with IPv4 Passive Interface

- Use the passive-interface command to:
 - Prevent neighbor adjacencies
 - Suppress unnecessary update traffic
 - Increase security controls, such as preventing unknown rogue routing devices from receiving EIGRP updates

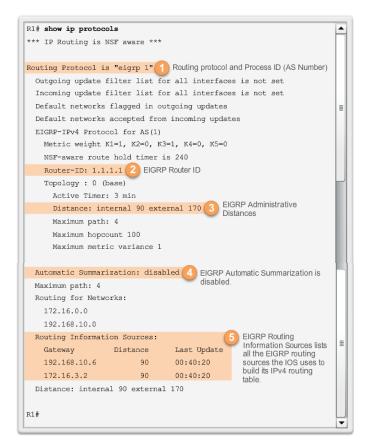
• To configure:

Router(config) # router eigrp as-number

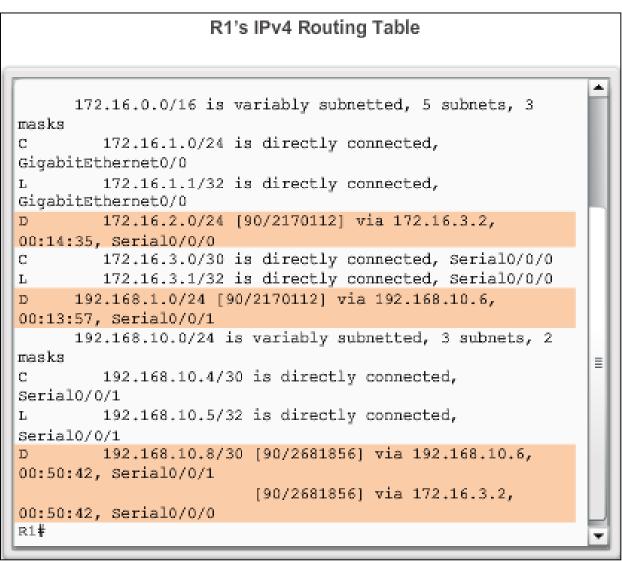

Router(config-router) # **passive-**

interface interface-type interface-number

To verify:


Router# show ip protocols

Configuring EIGRP with IPv4 Verifying EIGRP: Examining Neighbors

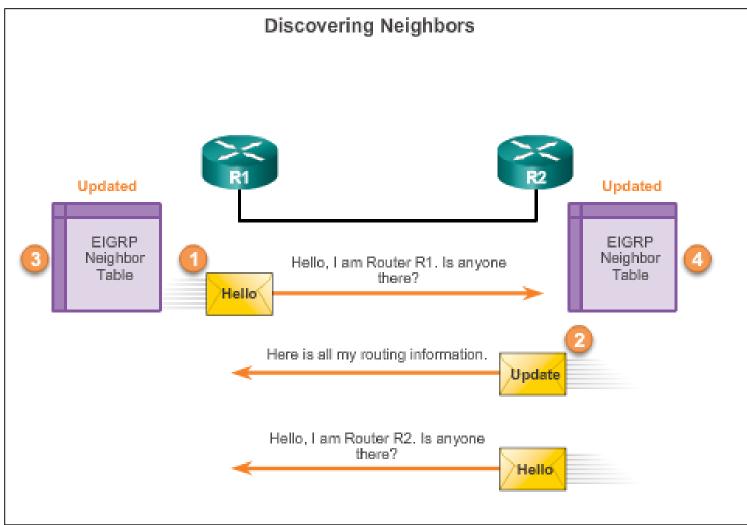


Configuring EIGRP with IPv4 Verifying EIGRP: show ip protocols Command

show ip protocols Command

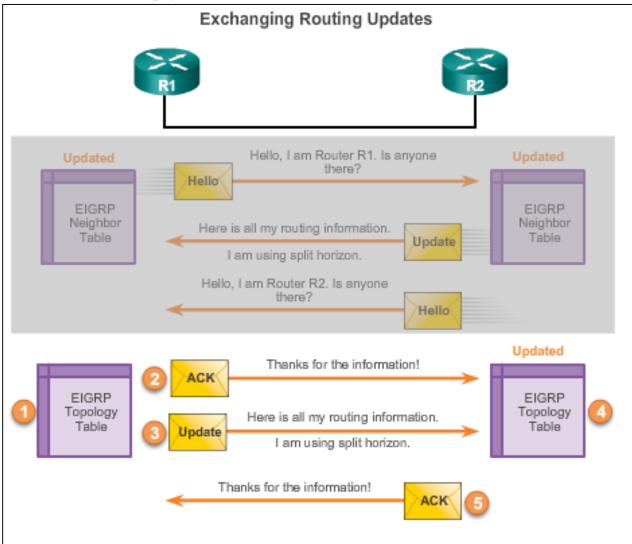
Configuring EIGRP with IPv4 Verifying EIGRP: Examine the IPv4 Routing Table

7.3 Operation of EIGRP

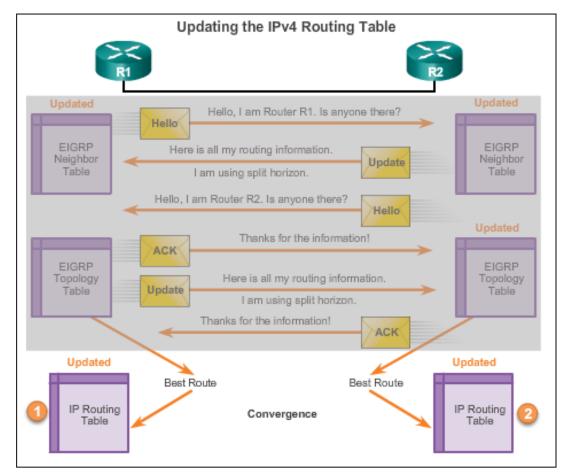


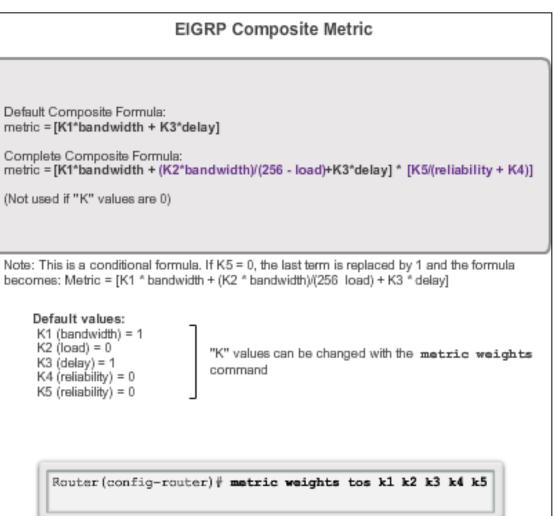
© 2008 Cisco Systems, Inc. All rights reserved

cisco.



EIGRP Initial Route Discovery EIGRP Neighbor Adjacency


EIGRP Initial Route Discovery EIGRP Topology Table


EIGRP Initial Route Discovery EIGRP Convergence

Convergence – All routers have the correct, most up-to-date information about the network.

Metrics EIGRP Composite Metric

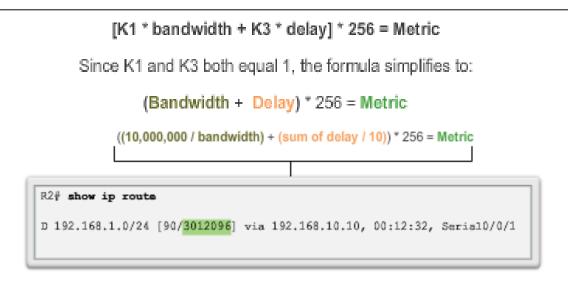
Metrics Examining Interface Values

- BW Bandwidth of the interface (in Kilobits per second).
- DLY Delay of the interface (microseconds).
- Reliability Reliability of interface; by default, the value is not included in the computing metric.
- Txload, Rxload By default, the value is not included in the computing metric.

```
R1#show interface serial 0/0/0
Serial0/0/0 is up, line protocol is up
  Hardware is WIC MBRD Serial
  Internet address is 172.16.3.1/30
 MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation HDLC, loopback not set
<Output omitted>
R1₩
R1#show interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
  Hardware is CN Gigabit Ethernet, address is fc99.4775.c3e0 (bia
fc99.4775.c3e0)
  Internet address is 172.16.1.1/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
<Output omitted>
R1₩
```

Metrics Bandwidth Metric

- Use the show interfaces command to verify bandwidth.
- Most serial bandwidths are set to 1,544 kb/s (default).
- A correct value for bandwidth is very important in order to calculate the correct metric (both sides of link must have same bandwidth).

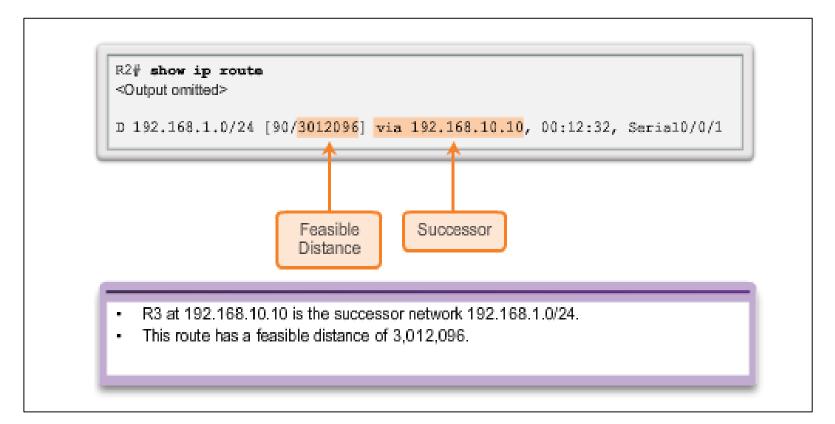

Metrics **Delay Metric**

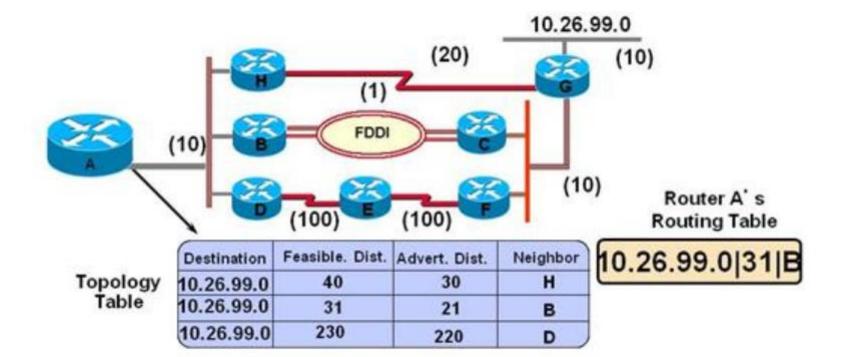
Interface Delay Values		
Media	Delay	
Ethemet	1,000	
Fast Ethemet	100	
Gigabit Ethemet	10	
16M Token Ring	630	
FDDI	100	
T1 (Serial Default)	20,000	
DS0 (64 Kbps)	20,000	
1024 Kbps	20,000	
56 Kbps	20,000	

Metrics Calculating the EIGRP Metric

- **Step 1.** Determine the link with the slowest bandwidth. Use that value to calculate bandwidth (10,000,000/bandwidth).
- **Step 2.** Determine the delay value for each outgoing interface on the way to the destination. Add the delay values and divide by 10 (sum of delay/10).
- **Step 3.** Add the computed values for bandwidth and delay, and multiply the sum by 256 to obtain the EIGRP metric.

DUAL and the Topology Table **DUAL Concepts**

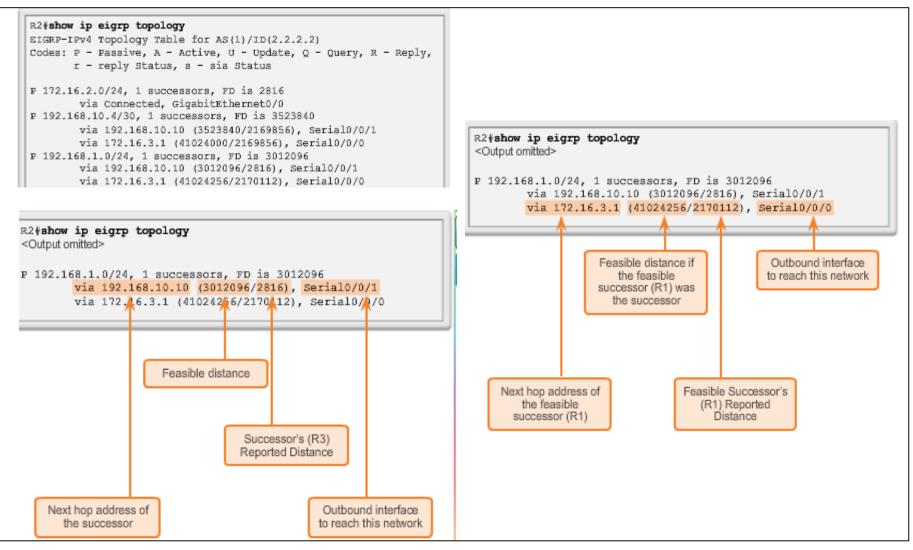

- Diffusing Update ALgorithm (DUAL) provides the following:
 - Loop-free paths and loop-free backup paths
 - Fast convergence
 - Minimum bandwidth usage with bounded updates
- The decision process for all route computations is done by the DUAL Finite State Machine (FSM)
 - DUAL FSM tracks all routes.
 - Uses EIGRP metrics to select efficient, loop-free paths.
 - Identifies the routes with the least-cost path to be inserted into the routing table.
- EIGRP maintains a list of backup routes that DUAL has already determined that can be used immediately if the primary path fails.



DUAL and the Topology Table Successor and Feasible Distance

- The **Successor** is the least-cost route to the destination network.
- The Feasible Distance (FD) is the lowest calculated metric to reach the destination network.

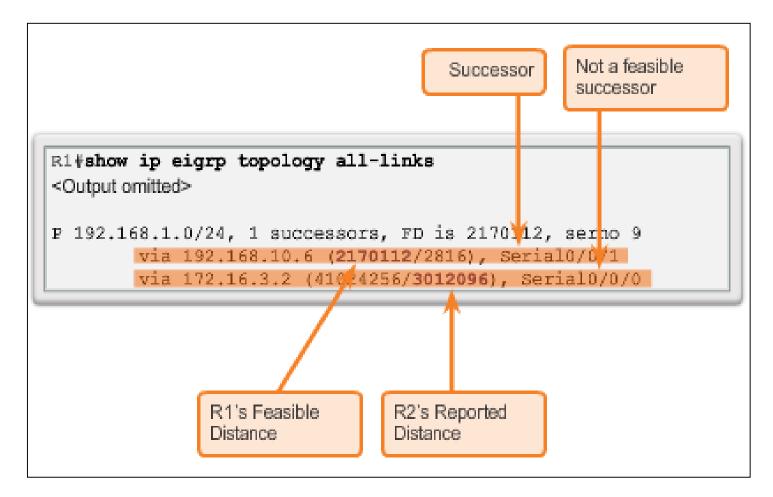
Route through B is current successor Route through H is the feasible successor

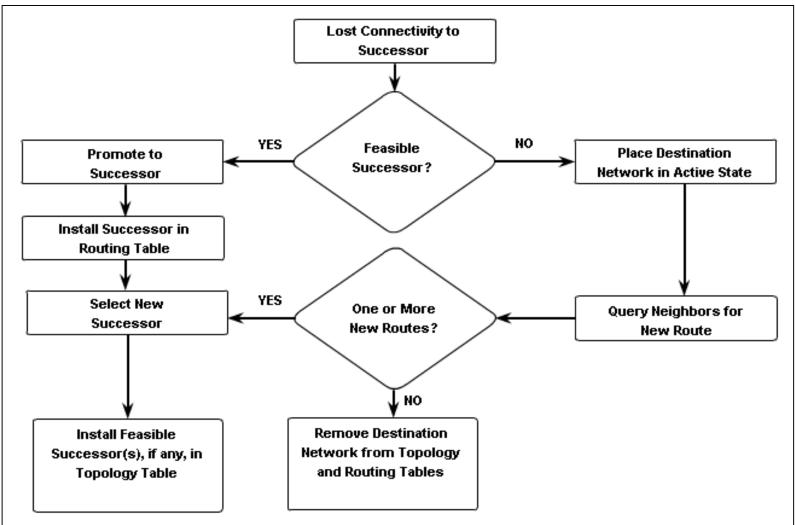


Feasible Successors, Feasibility Condition, and Reported Distance

- Feasible Successor (FS) is a neighbor that has a loop-free backup path to the same network as the successor, and it satisfies the Feasibility Condition (FC).
- Feasibility Condition (FC) is met when a neighbor's Reported Distance (RD) to a network is less than the local router's feasible distance to the same destination network.
- Reported Distance (RD) is an EIGRP neighbor's feasible distance to the same destination network.

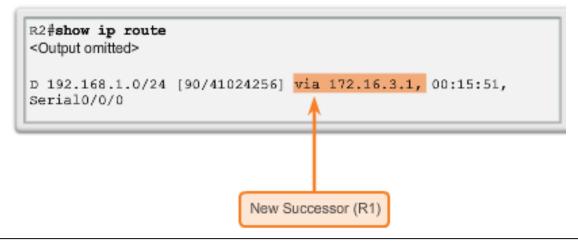
cisco.


DUAL and the Topology Table Topology Table: show ip eigrp Command


cisco.

DUAL and the Topology Table Topology Table: No Feasible Successor

DUAL and Convergence **DUAL Finite State Machine (FSM)**



cisco.

DUAL and Convergence DUAL: Feasible Successor

R2#debug eigrp fsm		
EIGRP Finite State Machine debugging is on		
R2#conf t		
Enter configuration commands, one per line. End with CNTL/Z.		
R2(config)#interface s 0/0/1		
R2 (config-if) #shutdown		
<output omitted=""></output>		
EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 3012096,		
RD is 3012096 on tid 0		
DUAL: AS(1) Removing dest 172.16.1.0/24, nexthop 192.168.10.10		
DUAL: AS(1) RT installed 172.16.1.0/24 via 172.16.3.1		
<output omitted=""></output>		
R2(config-if) #end		
R2#undebug all		
-		

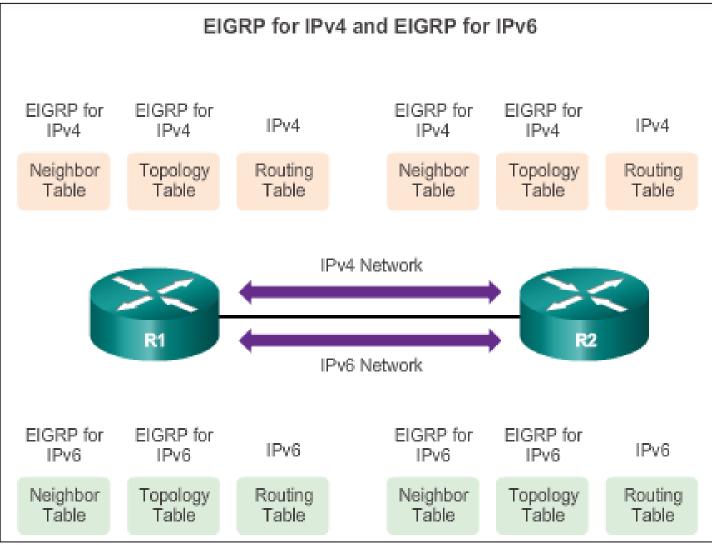
DUAL and Convergence DUAL: No Feasible Successor

<pre>? 192.168.1.0/24, 1 successors, FD is 2170112 via 192.168.10.6 (2170112/2816), Serial0/0/1 Successor(R3) No feasible successor R1#debug eigrp fsm EIGRP Finite State Machine debugging is on R1#conf t Enter configuration commands, one per line. End with CNTL/Z. R1 (config)#interface s 0/0/1 R1 (config)#interface s 0/0/1 R1 (config)if)#shutdown <output omitted=""> EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 2170112, RD is 2170112 DUAL: AS(1) Dest 192.168.1.0/24 entering active state for tid 0. EIGRP-IPv4(1): dest(192.168.1.0/24) active EIGRP-IPv4(1): revreply: 192.168.1.0/24 via 172.16.3.2 metric 41024256/3012096 EIGRP-IPv4(1): reply count is 1 EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 72057594037927935, RD is 72057594037927935 DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""> R1 (config-if)#end</output></output></pre>	Output omitted	>
R1#debug eigrp fsm EIGRP Finite State Machine debugging is on R1#conf t Enter configuration commands, one per line. End with CNTL/Z. R1(config)#interface s 0/0/1 R1(config-if)#shutdown <outputomitted> EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 2170112, RD is 2170112 DUAL: AS(1) Dest 192.168.1.0/24 entering active state for tid 0. EIGRP-IPv4(1): dest(192.168.1.0/24) active EIGRP-IPv4(1): revreply: 192.168.1.0/24 via 172.16.3.2 metric 41024256/3012096 EIGRP-IPv4(1): reply count is 1 EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 72057594037927935, RD is 72057594037927935 DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output></outputomitted>		
EIGRP Finite State Machine debugging is on R1#conf t Enter configuration commands, one per line. End with CNTL/Z. R1 (config) #interface s 0/0/1 R1 (config-if) #shutdown <output omitted=""> EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 2170112, RD is 2170112 DUAL: AS(1) Dest 192.168.1.0/24 entering active state for tid 0. EIGRP-IPv4(1): dest(192.168.1.0/24) active EIGRP-IPv4(1): revreply: 192.168.1.0/24 via 172.16.3.2 metric 41024256/3012096 EIGRP-IPv4(1): reply count is 1 EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 72057594037927935, RD is 72057594037927935 DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output></output>	Successor	r (R3) No feasible successor
R1 (config) #interface s 0/0/1 R1 (config-if) #shutdown <output omitted=""> EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 2170112, RD is 2170112 DUAL: AS(1) Dest 192.168.1.0/24 entering active state for tid 0. EIGRP-IPv4(1): dest(192.168.1.0/24) active EIGRP-IPv4(1): revreply: 192.168.1.0/24 via 172.16.3.2 metric 41024256/3012096 EIGRP-IPv4(1): reply count is 1 EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 72057594037927935, RD is 72057594037927935 DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output></output>	EIGRP Finit R1 #conf t	e State Machine debugging is on
EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 2170112, RD is 2170112 DUAL: AS(1) Dest 192.168.1.0/24 entering active state for tid 0. EIGRP-IPv4(1): dest(192.168.1.0/24) active EIGRP-IPv4(1): rcvreply: 192.168.1.0/24 via 172.16.3.2 metric 41024256/3012096 EIGRP-IPv4(1): reply count is 1 EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 72057594037927935, RD is 72057594037927935 DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output>	R1 (config) # R1 (config-i	interface s 0/0/1 f)#shutdown
DUAL: AS(1) Dest 192.168.1.0/24 entering active state for tid 0. EIGRP-IPv4(1): dest(192.168.1.0/24) active EIGRP-IPv4(1): rcvreply: 192.168.1.0/24 via 172.16.3.2 metric 41024256/3012096 EIGRP-IPv4(1): reply count is 1 EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 72057594037927935, RD is 72057594037927935 DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output>	EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 2170112,
EIGRP-IPv4(1): dest(192.168.1.0/24) active EIGRP-IPv4(1): rcvreply: 192.168.1.0/24 via 172.16.3.2 metric 41024256/3012096 EIGRP-IPv4(1): reply count is 1 EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 72057594037927935, RD is 72057594037927935 DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output>		
EIGRP-IPv4(1): Find FS for dest 192.168.1.0/24. FD is 72057594037927935, RD is 72057594037927935 DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output>	EIGRP-IPv4(EIGRP-IPv4(1): rcvreply: 192.168.1.0/24 via 172.16.3.2 metric
<pre>DUAL: AS(1) Removing dest 192.168.1.0/24, nexthop 192.168.10.6 DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output></pre>		1): Find FS for dest 192.168.1.0/24. FD is
DUAL: AS(1) RT installed 192.168.1.0/24 via 172.16.3.2 <output omitted=""></output>	1	
	72057594037	Removing dest 192.168.1.0/24, nextbop 192.168.10.6
R1 (config-if) #end	72057594037 DUAL: AS(1)	
R1#undebug all	72057594037 DUAL: AS(1) DUAL: AS(1)	RT installed 192.168.1.0/24 via 172.16.3.2

Class Activity

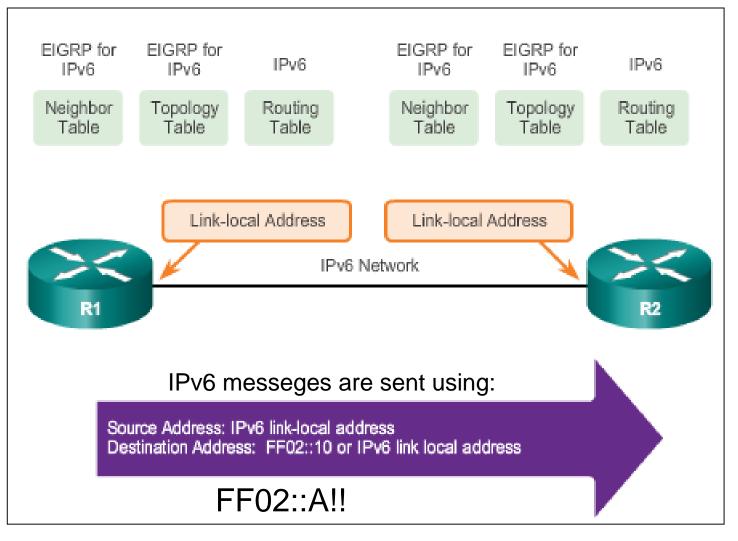
 Packet tracer activity 7.3.4.4 Investigating DUAL FSM Modify EIGRP metric

7.4 Configuration of EIGRP for IPv6

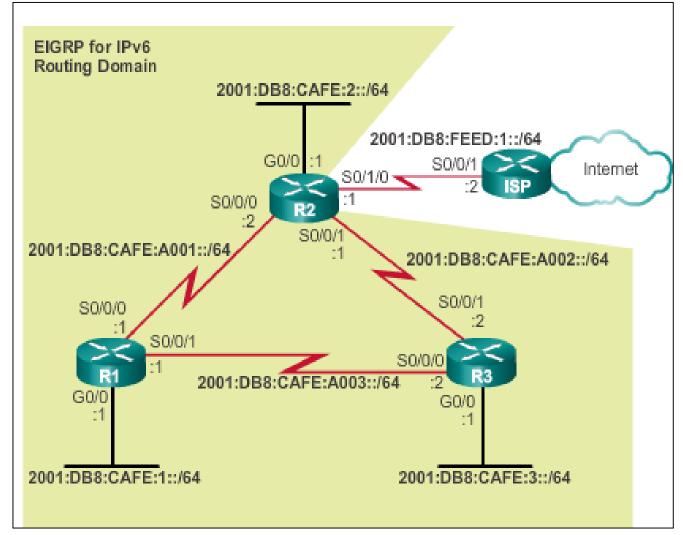


© 2008 Cisco Systems, Inc. All rights reserved

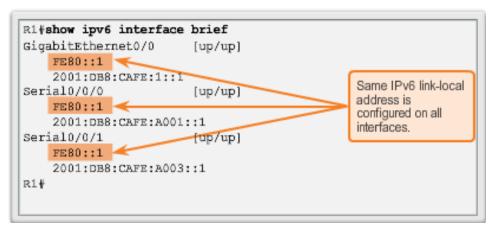
EIGRP for IPv4 vs. IPv6 EIGRP for IPv6



EIGRP for IPv4 vs. IPv6 Comparing EIGRP for IPv4 and IPv6


	EIGRP for IPv4	EIGRP for IPv6
Advertised routes	IPv4 networks	IPv6 prefixes
Distance vector	Yes	Yes
Convergence technology	DUAL	DUAL
Metric	Bandwidth and delay by default, reliability and load are optional	Bandwidth and delay by default, reliability and load are optional
Transport protocol	RTP	RTP
Update messages	Incremental, partial and bounded updates	Incremental, partial and bounded updates
Neighbor discovery	Hello packets	Hello packets
Source and destination addresses	IPv4 source address and 224.0.0.10 IPv4 multicast destination address	IPv6 link-local source address and FF02::10 IPv6 multicast destination address
Authentication	Plain text and MD5	MD5
Router ID	32-bit router ID	32-bit router ID

EIGRP for IPv4 vs. IPv6 IPv6 Link-local Addresses


Configuring EIGRP for IPv6 EIGRP for IPv6 Network Topology

Manually configuring link-local addresses

```
R1 (config) #interface s 0/0/0
R1 (config-if) #ipv6 address fe80::1 ?
    link-local Use link-local address
R1 (config-if) #ipv6 address fe80::1 link-local
R1 (config) #interface s 0/0/1
R1 (config-if) #ipv6 address fe80::1 link-local
R1 (config-if) #exit
R1 (config-if) #exit
R1 (config-if) #ipv6 address fe80::1 link-local
R1 (config-if) #
```

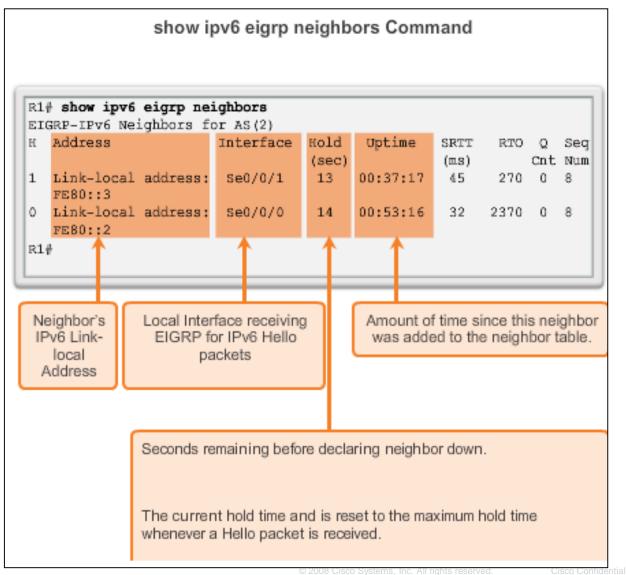
Verifying link-local addresses

Configuring EIGRP for IPv6 Configuring EIGRP for the IPv6 Routing Process

- The ipv6 unicast-routing global configuration mode command is required to enable any IPv6 routing protocol.
- Configuring EIGRP for IPv6

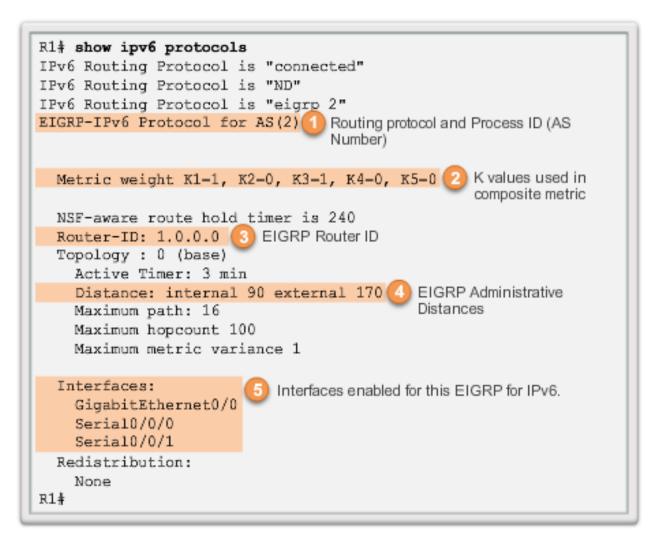
```
R2(config)#ipv6 unicast-routing
R2(config)#ipv6 router eigrp 2
R2(config-rtr)#eigrp router-id 2.0.0.0
R2(config-rtr)#no shutdown
R2(config-rtr)#
```

The no shutdown command and a router ID are required for the router to form neighbor adjacencies.


Configuring EIGRP for IPv6 ipv6 eigrp interface Command

Enabling EIGRP of IPv6 on an Interface

```
R1 (config) #interface g0/0
R1 (config-if) #ipv6 eigrp 2
R1 (config-if) #exit
R1 (config) #interface s 0/0/0
R1 (config-if) #ipv6 eigrp 2
R1 (config-if) #exit
R1 (config) #interface s 0/0/1
R1 (config-if) #ipv6 eigrp 2
R1 (config-if) #
```


```
R2(config) #interface g 0/0
R2(config-if) #ipv6 eigrp 2
R2(config-if) #exit
R2(config) #interface s 0/0/0
R2(config-if) #ipv6 eigrp 2
R2(config-if) #exit
%DUAL-5-NBRCHANGE: EIGRP-IPv6 2: Neighbor FE80::1
(Serial0/0/0) is up: new adjacency
R2(config) #interface s 0/0/1
R2(config-if) #ipv6 eigrp 2
R2(config-if) #
```

Verifying EIGRP for IPv6 Verifying EIGRP for IPv6: Examining Neighbors

Verifying EIGRP for IPv6 Verifying EIGRP for IPv6: show ip protocols Command

Verifying EIGRP for IPv6 Verifying EIGRP for IPv6: Examine the Routing Table

Use the **show ipv6 route** command to examine the IPv6 routing table.

R1∦	show ipv6 route
<0	utput omitted>
С	2001:DB8:CAFE:1::/64 [0/0]
L	<pre>via GigabitEthernet0/0, directly connected 2001:DB8:CAFE:1::1/128 [0/0] via GigabitEthernet0/0, receive</pre>
D	2001:DB8:CAFE:2::/64 [90/3524096]
D	<pre>via FE80::3, Serial0/0/1 2001:DB8:CAFE:3::/64 [90/2170112] via FE80::3, Serial0/0/1</pre>
С	2001:DB8:CAFE:A001::/64 [0/0] via Serial0/0/0, directly connected
L	2001:DB8:CAFE:A001::1/128 [0/0] via Serial0/0/0, receive
D	2001:DB8:CAFE:A002::/64 [90/3523840] via FE80::3, Serial0/0/1
С	2001:DB8:CAFE:A003::/64 [0/0] via Serial0/0/1, directly connected
L	2001:DB8:CAFE:A003::1/128 [0/0] via Serial0/0/1, receive
L	FF00::/8 [0/0] via Nullo, receive
R1∦	

Chapter 7: Summary

- EIGRP is a classless, advanced distance vector routing protocol.
- EIGRP uses the source code of "D" for DUAL in the routing table.
- The default administrative distance of 90 is used for internal routes and 170 for routes imported from an external source.
- Advanced features include DUAL, establishing neighbor adjacencies, RTP, partial and bounded updates, and equal and unequal cost load balancing.
- PDMs give EIGRP the capability to support different Layer 3 protocols.
- EIGRP Hello packets are used to discover neighbors.
- The show ip eigrp neighbors command is used to view neighbor table and verify adjacencies.

11111

Chapter 7: Summary (cont.)

- EIGRP sends partial bounded updates when a change occurs on network.
- EIGRP composite metric uses bandwidth, delay, reliability and load to determine the best path (by default, only bandwidth and delay are used).
- DUAL FSM is used to determine best path; Successor and potential backup path, FS to every destination network.

Cisco | Networking Academy® Mind Wide Open®