

OSPF – Open Shotest Path First

Routing Configuration

© 2008 Cisco Systems, Inc. All rights reserved

OSPF – Open Shotest Path First

Single-Area OSPF

Characteristics of OSPF

Configuring Single-area OSPFv2

Configuring Single-area OSPFv3

Advanced Single-Area OSPF Configurations

Multiarea OSPF Operation

Configuring Multiarea OSPF

Single-Area OSPF

Presentation_ID

© 2008 Cisco Systems, Inc. All rights reserved

Characteristics of OSPF

© 2008 Cisco Systems, Inc. All rights reserved

Open Shortest Path First Evolution of OSPF

Interior Gateway Protocols

Open Shortest Path First Features of OSPF

Open Shortest Path First Components of OSPF

OSPF Data Structures

Detebase Table Description		
Adjacency Database	Neighbor Table	 List of all neighbor routers to which a router has established bidirectional communication. This table is unique for each router. Can be viewed using the show ip ospf neighbor command.
Link-state Database (LSDB)	Topology Table	 Lists information about all other routers in the network. The database shows the network topology. All routers within an area have identical LSDB. Can be viewed using the show ip ospf database command.
Forwarding Database	Routing Table	 List of routes generated when an algorithm is run on the link-state database. Each router's routing table is unique and contains information on how and where to send packets to other routers. Can be viewed using the show ip route command.

Open Shortest Path First Components of OSPF

OSPF Routers Exchange Packets - These packets are used to discover neighboring routers and also to exchange routing information to maintain accurate information about the network.

cisco.

Open Shortest Path First Link-State Operation

Routers Exchange Hello Packets

If a neighbor is present, the OSPF-enabled router attempts to establish a neighbor adjacency with that neighbor

Open Shortest Path First Link-State Operation

- LSAs contain the state and cost of each directly connected link.
- Routers flood their LSAs to adjacent neighbors.
- Adjacent neighbors receiving the LSA immediately flood the LSA to other directly connected neighbors, until all routers in the area have all LSAs.

cisco.

Open Shortest Path First Link-State Operation

- Build the topology table based on the received LSAs.
- This database eventually holds all the information about the topology of the network.
- Execute the SPF Algorithm.

Open Shortest Path First Link-State Operation

Content of the R1 SPF Tree 10.5.0.0/16 10.2.0.0/16 10.9.0.0/16 10.1.0.0/16 10.11.0.0/16 5 ~ 2 **R1** 10.3.0.0/16 10.6.0.0/16 **R**5 10 10.7.0.0/16 10.4.0.0/16 10 10.10.0.0/16 10.8.0.0/16 Destination Shortest Path Cost 10.5.0.0/16 $R1 \rightarrow R2$ 22 10.6.0.0/16 $R1 \rightarrow R3$ 7 $R1 \rightarrow R3$ 15 10.7.0.0/16 10.8.0.0/16 $R1 \rightarrow R3 \rightarrow R4$ 17 $R1 \rightarrow R2$ 10.9.0.0/16 30 10.10.0.0/16 $R1 \rightarrow R3 \rightarrow R4$ 25 $R1 \rightarrow R3 \rightarrow R4 \rightarrow R5$ 10.11.0.0/16 27

From the SPF tree, the best paths are inserted into the routing table.

Open Shortest Path First Single-area and Multiarea OSPF

- Implemented using a two-layer area hierarchy as all areas must connect to the backbone area (area 0).
- Interconnecting routers are called Area Border Routers (ABR).
- Useful in larger network deployments to reduce processing and memory overhead.

Open Shortest Path First Single-area and Multiarea OSPF

Link Change Impacts Local Area Only

- Link failure affects the local area only (area 51).
- The ABR (R2) isolates the fault to area 51 only.
- Routers in areas 0 and 1 do not need the run the SPF algorithm.

OSPF Messages Encapsulating OSPF Messages

OSPF IPv4 Header Fields

Data Link Frame Header	IP Packet Header	OSPF Packet Header	OSPF Packet Type- Specific Database	
Data Link Frame (Ethernet Fields shown here) MAC Destination Address = Multicast: 01-00-5E-00-00-05 or 01-00-5E-00-00-06 MAC Source Address = Address of sending interface				
IP Packet IP Source Address = Address of sending interface IP Destination Address = Multicast: 224.0.0.5 or 224.0.0.6 Protocol field = 89 for OSPF				
OSPF Packet Header Type code for OSPF Packet type Router ID and Area Id				
OSPF Packet types 0x01 Hello 0x02 Database Description (DD) 0X03 Link State Request 0X04 Link State Update 0X05 Link State Acknowledgment				

OSPF Messages Types of OSPF Packets

OSPF Packet Descriptions

Туре	Packet Name	Description
1	Hello	Discovers neighbors and builds adjacencies between them
2	Database Description (DBD)	Checks for database synchronization between routers
3	Link-State Request (LSR)	Requests specific link-state records from router to router
4	Link-State Update (LSU)	Sends specifically requested link- state records
5	Link-State Acknowledgment (LSAck)	Acknowledges the other packet types

cisco.

OSPF Messages Hello Packet

OSPF Type 1 packet = Hello packet

- Discover OSPF neighbors and establish neighbor adjacencies
- Advertise parameters on which two routers must agree to become neighbors
- Elect the Designated Router (DR) and Backup Designated Router (BDR) on multiaccess networks like Ethernet and Frame Relay

OSPF Messages Hello Packet

OSPF Hello Packet Content

OSPF Messages Hello Packet Intervals

OSPF Hello packets are transmitted

- To 224.0.0.5 in IPv4 and FF02::5 in IPv6 (all OSPF routers)
- Every 10 seconds (default on multiaccess and point-topoint networks)
- Every 30 seconds (default on non-broadcast multiaccess [NBMA] networks)
- Dead interval is the period that the router waits to receive a Hello packet before declaring the neighbor down
- Router floods the LSDB with information about down neighbors out all OSPF enabled interfaces
- Cisco's default is 4 times the Hello interval

OSPF Messages Link-State Updates

LSUs Contain LSAs

Туре	Packet Name	Description
1	Hello	Discovers neighbors and builds adjacencies between them
2	DBD	Checks for database synchronization between router
3	LSR	Requests specific link-state records from router to router
4	LSU	Sends specifically requested link-state records
5	LSAck	Acknowledges the other packet types

- An LSU contains one or more LSAs.
- LSAs contain route information for destination networks.

LSA Type	Description	
1	Router LSAs	
2	Network LSAs	
3 or 4	Summary LSAs	
5	Autonomous System External LSAs	
6	Multicast OSPF LSAs	
7	Defined for Not-So-Stubby Areas	
8	External Attributes LSA for Border Gateway Protocol (BGP)	
9,10,11	Opaque LSAs	

OSPF Operation OSPF Operational States

When an OSPF router is initially connected to a network, it attempts to:

- Create adjacencies with neighbors
- Exchange routing information
- Calculate the best routes
- Reach convergence
- OSPF progresses through several states while attempting to reach convergence.

cisco.

OSPF Operation Establish Neighbor Adjacencies

OSPF Operation Establish Neighbor Adjacencies

DR and BDR election only occurs on multi-access networks such as Ethernet LANs.

cisco.

OSPF Operation OSPF DR and BDR

Creating Adjacencies With Every Neighbor

Example:5 routers (5-1)/2=10 adjacencies

OSPF Operation Synchronizing OSPF Database

Decide Which Router Sends the First DBD

cisco.

OSPF Operation Synchronizing OSPF Database

LSAck

ospf Trivia

Who Invented the SPF algorithm?

Configuring Single-area OSPFv2

© 2008 Cisco Systems, Inc. All rights reserved

OSPF Router ID OSPF Network Topology

Entering Router OSPF Configuration Mode on R1

R1(config) # router ospf :	LO
R1(config-router)# ?	
Router configuration com	nands:
auto-cost	Calculate OSPF interface cost
	according to bandwidth
network	Enable routing on an IP network
on	Negate a command or set its defaults
passive-interface	Suppress routing updates on an
	interface
priority	OSPF topology priority
router-id	router-id for this OSPF process

Note: Output has been altered to display only the commands that will be used in this chapter.

cisco.

OSPF Router ID Router IDs

Router ID Order of Precedence

Configure Single-area OSPFv2 The network Command

Assigning Interfaces to an OSPF Area

```
R1(config)# router ospf 10
R1(config-router)# network 172.16.1.0 0.0.0.255 area 0
R1(config-router)# network 172.16.3.0 0.0.0.3 area 0
R1(config-router)# network 192.168.10.4 0.0.0.3 area 0
R1(config-router)#
R1#
```

Assigning Interfaces to an OSPF Area with a Quad Zero

```
R1(config)# router ospf 10
R1(config-router)# network 172.16.1.1 0.0.0.0 area 0
R1(config-router)# network 172.16.3.1 0.0.0.0 area 0
R1(config-router)# network 192.168.10.5 0.0.0.0 area 0
R1(config-router)#
R1#
```

cisco.

Configure Single-area OSPFv2 Configuring Passive Interfaces

Configuring a Passive Interface on R1

```
R1(config)# router ospf 10
R1(config-router)# passive-interface GigabitEthernet 0/0
R1(config-router)# end
R1#
```

Use the **passive-interface** router

configuration mode command to prevent the transmission of routing messages through a router interface, but still allow that network to be advertised to other routers.

OSPF Cost OSPF Metric = Cost

Cost = <u>reference bandwidth</u> / <u>interface bandwidth</u> (default reference bandwidth is 10^8) Cost = <u>100,000,000 bps</u> / <u>interface bandwidth in bps</u>

Default Cisco OSPF Cost Values

Interface Type	Reference Bandwidth in b	ops	Default Bandwidth in bps	Cost	
Gigabit Ethernet 10 Gbps	100,000,000	÷	10,000,000,000	1	
Gigabit Ethernet 1 Gbps	100,000,000	÷	1,000,000,000	1	due to reference bandwidt
Fast Ethernet 100 Mbps	100,000,000	÷	100,000,000	1	J
Ethernet 10 Mbps	100,000,000	÷	10,000,000	10	
Serial 1.544 Mbps	100,000,000	÷	1,544,000	64	
Serial 128 kbps	100,000,000	÷	128,000	781	
Serial 64 kbps	100,000,000	÷	64,000	1562	

© 2008 Cisco Systems, Inc. All rights reserved.

OSPF Cost OSPF Accumulates Costs

Cost of an OSPF route is the accumulated value from one router to the destination network

OSPF Cost Adjusting the Reference Bandwidth

- Use the command auto-cost reference-bandwidth
- Must be configured on every router in the OSPF domain
- Notice that the value is expressed in Mb/s:
 Gigabit Ethernet auto-cost reference-bandwidth 1000
 10 Gigabit Ethernet auto-cost reference-bandwidth 10000

Verifying the S0/0/0 Link Cost

R1# show ip ospf interface serial 0/0/0	
Serial0/0/0 is up, line protocol is up	
Internet Address 172.16.3.1/30, Area 0, Attached via Networ	k Statement
Process ID 10, Router ID 1.1.1.1, Network Type POINT TO POI	NT, Cost: 647
Topology-MTID Cost Disabled Shutdown Topol-	
0 647 no no E	Verifying the Metric to the R2 LAN
Transmit Delay is 1 sec, State POINT TO POINT	
Timer intervals configured, Hello 10, Dead 40, Wait 40,	
oob-resync timeout 40	R1# show ip route include 172.16.2.0
Hello due in 00:00:01	0 172.16.2.0/24 [110/648] via 172.16.3.2, 00:06:03, Serial0/0/0
Supports Link-local Signaling (LLS)	R1#
Cisco NSF helper support enabled	R1# show ip route 172.16.2.0
IETF NSF helper support enabled	Routing entry for 172.16.2.0/24
Index 3/3, flood queue length 0	Known via "ospf 10", distance 110, metric 648, type intra area
Next 0x0(0)/0x0(0)	Last update from 172.16.3.2 on Serial0/0/0, 00:06:17 ago
Last flood scan length is 1, maximum is 1	Routing Descriptor Blocks:
Last flood scan time is 0 msec, maximum is 0 msec	* 172.16.3.2, from 2.2.2.2, 00:06:17 ago, via Serial0/0/0
Neighbor Count is 1, Adjacent neighbor count is 1	Route metric is 648, traffic share count is 1
Adjacent with neighbor 2.2.2.2	R1#
Suppress hello for 0 neighbor(s)	R1#
R1#	

cisco.

OSPF Cost Default Interface Bandwidths

On Cisco routers, the default bandwidth on most serial interfaces is set to 1.544 Mb/s

R1# show interfaces serial 0/0/0 Serial0/0/0 is up, line protocol is up Hardware is WIC MBRD Serial Description: Link to R2 Internet address is 172.16.3.1/30 MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation HDLC, loopback not set Keepalive set (10 sec) Last input 00:00:05, output 00:00:03, output hang never Last clearing of "show interface" counters never Input gueue: 0/75/0/0 (size/max/drops/flushes); Total
OSPF Cost Adjusting the Interface Bandwidths

Adjusting the R1 Serial 0/0/1 Interface

```
R1(config)# int s0/0/1
R1(config-if)# bandwidth 64
R1(config-if)# end
R1#
*Mar 27 10:10:07.735: %SYS-5-CONFIG_I: Configured from console by c
R1#
R1# show interfaces serial 0/0/1 | include BW
MTU 1500 bytes, BW 64 Kbit/sec, DLY 20000 usec,
R1#
R1# show ip ospf interface serial 0/0/1 | include Cost:
    Process ID 10, Router ID 1.1.1.1, Network Type
    POINT_TO_POINT, Cost: 15625
R1#
```


OSPF Cost Manually Setting the OSPF Cost

Both the **bandwidth** interface command and the **ip ospf cost** interface command achieve the same result, which is to provide an accurate value for use by OSPF in determining the best route.

```
R1(config)# int s0/0/1
R1(config-if)# no bandwidth 64
R1(config-if)# ip ospf cost 15625
R1(config-if)# end
R1#
R1# show interface serial 0/0/1 | include BW
        MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
R1#
R1# show ip ospf interface serial 0/0/1 | include Cost:
        Process ID 10, Router ID 1.1.1.1, Network Type POINT_TO_POINT,
        Cost: 15625
R1#
```


Verify OSPF Verify OSPF Neighbors

Verify that the router has formed an adjacency with its neighboring routers

 R1# show ip ospf neighbor

 Neighbor ID
 Pri
 State
 Dead Time Address
 Interface

 3.3.3.3
 0
 FULL/ 00:00:37
 192.168.10.6
 Seria10/0/1

 2.2.2.2
 0
 FULL/ 00:00:30
 172.16.3.2
 Seria10/0/0

 R1#

Verify OSPF Verify OSPF Protocol Settings

Verifying R1's OSPF Neighbors

```
R1# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "ospf 10"
 Outgoing update filter list for all interfaces is not
  set
 Incoming update filter list for all interfaces is not
  set
 Router ID 1.1.1.1
 Number of areas in this router is 1. 1 normal 0 stub 0
 nssa
 Maximum path: 4
 Routing for Networks:
    172.16.1.0 0.0.0.255 area 0
    172.16.3.0 0.0.0.3 area 0
    192.168.10.4 0.0.0.3 area 0
 Routing Information Sources:
                                 Last Update
                    Distance
    Gateway
   2.2.2.2
                         110
                                00:17:18
    3.3.3.3
                                 00:14:49
                         110
 Distance: (default is 110)
R1#
```

Verify OSPF Verify OSPF Interface Settings

Verifying R1's OSPF Interfaces

R1# show ip ospf interface brief								
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs F/C		
Se0/0/1	10	0	192.168.10.5/30	15625	P2P	1/1		
Se0/0/0	10	0	172.16.3.1/30	647	P2P	1/1		
Gi0/0	10	0	172.16.1.1/24	1	DR	0/0		
R1#								

cisco.

41

ospf Trivia

- What is the RFC number of OSPFv2?
- What is the RFC number of OSPFv3?

Configuring Single-area

© 2008 Cisco Systems, Inc. All rights reserved

OSPFv2 vs. OSPFv3 OSPFv3

OSPFv2 and OSPFv3 Data Structures

	OSPFv2 and OSPFv3				
Link-State	Yes				
Routing Algorithm	SPF				
Metric	Cost				
Areas	Supports the same two-level hierarchy				
Packet Types	Same Hello, DBD, LSR, LSU and LSAck packets				
Neighbor Discovery	Transitions through the same states using Hello packets				
DR and BDR	Function and election process is the same				
Router ID	32-bit router ID: determined by the same process in both protocols				

	OSPFv2	OSPFv3
Advertises	IPv4 networks	IPv6 prefixes
Source Address	IPv4 source address	IPv6 link-local address
Destination Address	 Choice of: Neighbor IPv4 unicast address 224.0.0.5 all-OSPF-routers multicast address 224.0.0.6 DR/BDR multicast address 	 Choice of: Neighbor IPv6 link-local address FF02::5 all-OSPFv3-routers multicast address FF02::6 DR/BDR multicast address
Advertise Networks	Configured using the network router configuration command	Configured using the ipv6 ospf process-id area-id interface configuration command
IP Unicast Routing	IPv4 unicast routing is enabled by default.	IPv6 unicast forwarding is not enabled by default. The ipv6 unicast-routing global configuration command must be configured.
Authentication	Plain text and MD5	IPv6 authentication

OSPFv2 vs. OSPFv3 Link-Local Addresses

OSPFv3 Packet Destination

Configuring OSFPv3 OSPFv3 Network Topology

Configuring Global-Unicast Addresses on R1

```
R1 (config) # ipv6 unicast-routing
R1 (config) #
R1(config) # interface GigabitEthernet 0/0
R1(config-if) # description R1 LAN
R1(config-if) # ipv6 address 2001:DB8:CAFE:1::1/64
R1(config-if) # no shut
R1(config-if)#
R1(config-if) # interface Serial0/0/0
R1(config-if) # description Link to R2
R1(config-if) # ipv6 address 2001:DB8:CAFE:A001::1/64
R1(config-if) # clock rate 128000
R1(config-if) # no shut
R1(config-if)#
R1(config-if) # interface Serial0/0/1
R1(config-if) # description Link to R3
R1(config-if) # ipv6 address 2001:DB8:CAFE:A003::1/64
R1(config-if) # no shut
R1(config-if) # end
R1#
```

Configuring OSFPv3 Link-Local Addresses

- Link-local addresses are automatically created when an IPv6 global unicast address is assigned to the interface (required).
- Global unicast addresses are not required.
- Cisco routers create the link-local address using FE80::/10 prefix and the EUI-64 process unless the router is configured manually,
- EUI-64 involves using the 48-bit Ethernet MAC address, inserting FFFE in the middle and flipping the seventh bit. For serial interfaces, Cisco uses the MAC address of an Ethernet interface.
- Notice in the figure that all three interfaces are using the same link-local address.

cisco.

Configuring OSFPv3 Assigning Link-Local Addresses

```
R1(config)# interface GigabitEthernet 0/0
R1(config-if)# ipv6 address fe80::1 link-local
R1(config-if)# exit
R1(config)# interface Serial0/0/0
R1(config-if)# ipv6 address fe80::1 link-local
R1(config-if)# exit
R1(config)# interface Serial0/0/1
R1(config-if)# ipv6 address fe80::1 link-local
R1(config-if)#
```

Configuring the linklocal address provides the ability to create an address that is recognizable and easier to remember

R1# show ipv6 interface	brief
Em0/0	[administratively down/down]
unassigned	
GigabitEthernet0/0	[up/up]
FE80::1	
2001:DB8:CAFE:1::1	
GigabitEthernet0/1 unassigned	[administratively down/down]
Serial0/0/0	[up/up]
FE80::1	
2001:DB8:CAFE:A001:	:1
Serial0/0/1	[up/up]
FE80::1	
2001:DB8:CAFE:A003:	:1
R1#	

Configuring OSFPv3 Configuring the OSPFv3 Router ID

Configuring OSFPv3 Configuring the OSPFv3 Router ID

Assigning a Router ID to R1

```
R1(config) # ipv6 router ospf 10
R1(config-rtr)#
*Mar 29 11:21:53.739: %OSPFv3-4-NORTRID: Process OSPFv3-1-
IPv6 could not pick a router-id, please configure manually
R1 (config-rtr) #
R1(config-rtr) # router-id 1.1.1.1
R1(config-rtr)#
R1(config-rtr) # auto-cost reference-bandwidth 1000
% OSPFv3-1-IPv6: Reference bandwidth is changed. Please
ensure reference bandwidth is consistent across all routers.
R1(config-rtr)#
R1(config-rtr)# end
R1#
R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
 Router ID 1.1.1.1
 Number of areas: 0 normal, 0 stub, 0 nssa
  Redistribution:
    None
R1#
```


Configuring OSFPv3 Modifying an OSPFv3 Router ID

R1(config)# ipv6 router ospf 10
R1(config-rtr)# router-id 1.1.1.1
R1(config-rtr)# end
R1#

R1# clear ipv6 ospf process
Reset selected OSPFv3 processes? [no]: Y
R1#
R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
Router ID 1.1.1.1
Number of areas: 0 normal, 0 stub, 0 nssa
Redistribution:
None
R1#

OSPF Configuring OSFPv3 Enabling OSPFv3 on Interfaces

Instead of using the **network** router configuration mode command to specify matching interface addresses, OSPFv3 is configured directly on the interface.

R1(config)	# int	erface Gi	gabitEther	net 0/0			
R1 (config-	if)‡	ipv6 ospf	10 area 0)			
R1 (config-	if)#						
R1(config-	if)#	interface	Serial0/0	/0			
R1(config-	if)‡	ipv6 ospf	10 area 0)			
R1(config-	if)#						
R1 (config-	if)#	interface	Serial0/0	/1			
R1(config-	if)#	ipv6 ospf	10 area 0				
R1(config-	if)#						
R1(config-	if)#	end					
R1#							
R1# show i	pv6 o	spf inter	faces brie	f			
Interface	PID	Area	Intf ID	Cost	State	Nbrs	F/C
Se0/0/1	10	0	7	15625	P2P	0/0	
Se0/0/0	10	0	6	647	P2P	0/0	
Gi0/0	10	0	3	1	WAIT	0/0	
R1#							
L							


```
R1# show ipv6 ospf neighbor
OSPFv3 Router with ID (1.1.1.1) (Process ID 10)
Neighbor ID Pri State Dead Time Interface ID Interface
3.3.3.3 0 FULL/ - 00:00:39 6 Serial0/0/1
2.2.2.2 0 FULL/ - 00:00:36 6 Serial0/0/0
R1#
```

```
R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
Router ID 1.1.1.1
Number of areas: 1 normal, 0 stub, 0 nssa
Interfaces (Area 0):
Serial0/0/1
Serial0/0/0
GigabitEthernet0/0
Redistribution:
None
R1#
```


Verify OSPFv3 Verify OSPFv3 Interfaces

R1# show	ipv6 ospf	interface brief					
Interface	PID	Area	Intf ID	Cost	State	Nbrs	F/C
Se0/0/1	10	0	7	15625	P2P	1/1	
Se0/0/0	10	0	6	647	P2P	1/1	
Gi0/0	10	0	3	1	DR	0/0	
R1#							

Verify OSPFv3 Verify IPv6 Routing Table

```
R1# show ipv6 route ospf
IPv6 Routing Table - default - 10 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user
Static route
       B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
       I2 - ISIS L2, IA - ISIS interarea, IS - ISIS
summary, D - EIGRP
       EX - EIGRP external, ND - ND Default, NDp - ND
Prefix, DCE - Destination
       NDr - Redirect, O - OSPF Intra, OI - OSPF Inter,
OE1 - OSPF ext 1
       OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF
NSSA ext 2
   2001:DB8:CAFE:2::/64 [110/657]
Ω.
    via FE80::2, Serial0/0/0
  2001:DB8:CAFE:3::/64 [110/1304]
\Omega –
   via FE80::2, Serial0/0/0
O 2001:DB8:CAFE:A002::/64 [110/1294]
     via FE80:::2, Serial0/0/0
R1#
```

OSPF Trivia

Do we have any ISPs supporting IPv6?

Advanced Single-Area OSPF Configurations

© 2008 Cisco Systems, Inc. All rights reserved

Routing in the Distribution and Core Layers Configuring Single-Area OSPF

2(config)# interf	ace GigabitEthernet0/0
2(config-if) # ban	dwidth 1000000
2(config-if) # exi	t
2(config) # router	ospf 10
2(config-router)#	router-id 2.2.2.2
2(config-router)#	auto-cost reference-bandwidth 1000
OSPF: Reference Please ens	bandwidth is changed. ure reference bandwidth is consistent
cross all routers	
2(config-router)#	network 172.16.2.1 0.0.0.0 area 0
2 (config-router) #	network 172.16.3.2 0.0.0.0 area 0
2(config-router)#	network 192.168.10.9 0.0.0.0 area 0
2(config-router)#	
2(config-router)#	passive-interface g0/0
(config-router)#	

Routing in the Distribution and Core Layers Verifying Single-Area OSPF

R1# show ip ospf neighbor									
Neighbor ID 3.3.3.3 2.2.2.2 R1#	Pri O O	State FULL/ FULL/	-	Dead Time 00:00:32 00:00:38	Address 192.168.10.6 172.16.3.2	Interface Serial0/0/1 Serial0/0/0			

```
R1# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "ospf 10"
  Outgoing update filter list for all interfaces is not set
  Incoming update filter list for all interfaces is not set
  Router ID 1.1.1.1
  Number of areas in this router is 1. 1 normal 0 stub 0 nssa
 Maximum path: 4
  Routing for Networks:
    172.16.1.0 0.0.0.255 area 0
    172.16.3.0 0.0.0.3 area 0
    192.168.10.4 0.0.0.3 area 0
  Passive Interface(s):
    GigabitEthernet0/0
 Routing Information Sources:
    Gateway
                    Distance
                                  Last Update
    3.3.3.3
                         110
                                  00:12:14
    2.2.2.2
                         110
                                  00:12:46
  Distance: (default is 110)
R1#v
```

Routing in the Distribution and Core Layers Verifying Single-Area OSPF (cont.)

R1# show ip ospf Routing Process "ospf 10" with ID 1.1.1.1 Start time: 00:06:18.952, Time elapsed: 00:39:56.400 <Output omitted> Number of areas in this router is 1. 1 normal 0 stub 0 nssa Number of areas transit capable is 0 External flood list length 0 IETF NSF helper support enabled Cisco NSF helper support enabled Reference bandwidth unit is 1000 mbps Area BACKEONE(0) Number of interfaces in this area is 3 Area has no authentication SPF algorithm last executed 00:15:21.436 ago SPF algorithm executed 6 times Area ranges are Number of LSA 3. Checksum Sum 0x023523 Number of opaque link LSA 0. Checksum Sum 0x000000 Number of DCbitless LSA 0 Number of indication LSA 0 Number of DoNotAge LSA 0 Flood list length 0 R1#

Routing in the Distribution and Core Layers Verifying Single-Area OSPF (cont.)

R1# show ip ospf interface GigabitEthernet0/0 is up, line protocol is up Internet Address 172.16.1.1/24, Area 0, Attached via Network Statement Process ID 10, Router ID 1.1.1.1, Network Type BROADCAST, Cost: 1 Disabled Topology-MTID Cost Shutdown Topology Name 0 1 no no Base Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 1.1.1.1, Interface address 172.16.1.1 No backup designated router on this network Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 oob-resync timeout 40 No Hellos (Passive interface) Supports Link-local Signaling (LLS) Cisco NSF helper support enabled IETF NSF helper support enabled Index 1/1, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 0, maximum is 0 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 0, Adjacent neighbor count is 0 Suppress hello for 0 neighbor(s) Serial0/0/1 is up, line protocol is up Internet Address 192.168.10.5/30, Area 0, Attached via Network Statement Process ID 10, Router ID 1.1.1.1, Network Type POINT TO POINT, Cost: 647 <Output omitted>

R1# show ip	ospf	interface	brief				
Interface	PID	Area	IP Address/Mask	Cost	State	Nbrs 1	F/C
Gi0/0	10	0	172.16.1.1/24	1	DR	0/0	
Se0/0/1	10	0	192.168.10.5/30	647	P2P	1/1	
Se0/0/0 R1 #	10	0	172.16.3.1/30	647	P2P	1/1	

R1#

Routing in the Distribution and Core Layers Configuring Single-Area OSPFv3

Routing in the Distribution and Core Layers Verifying Single-Area OSPFv3

R1# show ip	76 (ospf neighbor			
	osi	PFv3 Router wi	ith ID (1.1	1.1.1) (Proce	ss ID 10)
Neighbor ID	Pr	i State	Dead Time	Interface ID	Interface
3.3.3.3	0	FULL/ -	00:00:31	6	Serial0/0/1
2.2.2.2	0	FULL/ -	00:00:37	6	Serial0/0/0
2.2.2.2	1	FULL/BDR	00:00:38	3	GigabitEthernet0/0
3.3.3.3	1	FULL/DROTHER	00:00:32	3	GigabitEthernet0/0
R1#					

```
R1# show ipv6 protocols

IPv6 Routing Protocol is "connected"

IPv6 Routing Protocol is "ND"

IPv6 Routing Protocol is "ospf 10"

Router ID 1.1.1.1

Number of areas: 1 normal, 0 stub, 0 nssa

Interfaces (Area 0):

Serial0/0/1

Serial0/0/0

GigabitEthernet0/0

Redistribution:

None

R1#
```

cisco.

Routing in the Distribution and Core Layers Verifying Single-Area OSPFv3 (cont.)

R1# show ipv6 route ospf IPv6 Routing Table - default - 10 entries Codes: C - Connected, L - Local, S - Static, U - Per-user Static route B - BGP, R - RIP, H - NHRP, I1 - ISIS L1 12 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP EX - EIGRP external, ND - ND Default, NDp - ND Prefix, DCE - Destination NDr - Redirect, O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1 OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2 2001:DB8:CAFE:2::/64 [110/1] 0 via GigabitEthernet0/0, directly connected 2001:DB8:CAFE:3::/64 [110/1] 0 via GigabitEthernet0/0, directly connected 2001:DB8:CAFE:A002::/64 [110/648] 0 via FE80:::2, GigabitEthernet0/0 via FE80::3, GigabitEthernet0/0 R1#

R1# show ip	v6 ospf	interface brief					
Interface	PID	Area	Intf ID	Cost	State	Nbrs	F/C
Se0/0/1	10	0	7	647	P2P	1/1	
Se0/0/0	10	0	6	647	P2P	1/1	
Gi0/0	10	0	3	1	DR	2/2	
R1#							

- Point-to-point Two routers interconnected over a common link.
 Often the configuration in WAN links.
- Broadcast Multiaccess Multiple routers interconnected over an Ethernet network.
- Non-broadcast Multiaccess (NBMA) Multiple routers interconnected in a network that does not allow broadcasts, such as Frame Relay.
- Point-to-multipoint Multiple routers interconnected in a huband-spoke topology over an NBMA network.
- Virtual links Special OSPF network used to interconnect distant OSPF areas to the backbone area.

OSPF in Multiaccess Networks **Challenges in Multiaccess Networks**

Multiaccess networks can create two challenges for OSPF:

- Creation of multiple adjacencies creating adjacencies with multiple routers would lead to an excessive number of LSAs being exchanged.
- **Extensive flooding of LSAs** Link-state routers flood the network when OSPF is initialized or when there is a change.
 - Formula used to calculate
 - the number of required adjacencies n(n-1)/2A topology of 4 routers would result in 4(4-1)/2 = 6۲

1 1.1 1. cisco

- The designated router (DR) is the solution to managing adjacencies and flooding of LSAs on a multiaccess network.
- The backup designated router (BDR) is elected in case the DR fails.
- All other non-DR and non-BDR routers become DROTHERs.
 DROTHERs only form adjacencies with the DR and BDR.
- DROTHERs only send their LSAs to the DR and BDR using the multicast address 224.0.0.6.
- DR uses the multicast address 224.0.0.5 to send LSAs to all other routers. DR only router flooding LSAs.
- DR/BDR Elections only necessary on multiaccess networks.

OSPF in Multiaccess Networks OSPF Designated Router (cont.)

Role of the DR

DR sends out any LSAs to all other routers.

OSPF in Multiaccess Networks Verifying DR/BDR Roles

Verifying the Role of R1

State of neighbors in multiaccess networks can be:

- FULL/DROTHER This is a DR or BDR router that is fully adjacent with a non-DR or BDR router.
- FULL/DR The router is fully adjacent with the indicated DR neighbor.
- FULL/BDR The router is fully adjacent with the indicated BDR neighbor.
- 2-WAY/DROTHER The non-DR or BDR router has a neighbor adjacency with another non-DR or BDR router.

	R1# show ip	osj	pf neighbor				
	Neighbor ID	Pri State		Dead Time	Address	Interface	
0	2.2.2.2	1	FULL/BDR	00:00:36	192.168.1.2	GigabitEthernet0/0	
0	3.3.3.3	1	FULL/DR	0:00:35	192.168.1.3	GigabitEthernet0/0	
	R1₽						
OSPF in Multiaccess Networks Default DR/BDR Election Process

- The router with the highest interface priority is elected as the DR.
- The router with the second highest interface priority is elected as the BDR.
- Priority can be configured between 0-255. (Priority of 0 router cannot become the DR. 0
- If interface priorities are equal, then the router with highest router ID is elected DR and second highest the BDR
- Three ways to determine router ID:
 - Router ID can be manually configured.
 - If not configured, the ID determined by the highest loopback IP address.
 - If no loopbacks, the ID is determined by the highest active IPv4 address.
- In an IPv6 network, the router ID must be configured manually.

OSPF in Multiaccess Networks **DR/BDR Election Process**

DR remains the DR until one of the following occurs:

- The DR fails.
- The OSPF process on the DR fails or is stopped.
- The multiaccess interface on the DR fails or is shutdown.

If the DR fails, the BDR is automatically promoted to DR.

 There is then a new BDR election and the DROTHER with the higher priority or router ID is elected as the new BDR.

OSPF in Multiaccess Networks The OSPF Priority

- Instead of setting the router ID on all routers, it is better to control the election by setting interface priorities.
 - To change the priority, use one of the following commands:
 ip ospf priority value (OSPFv2 interface command)
 ipv6 ospf priority value (OSPFv3 interface command)
- To begin another OSPF election, use one of the following methods:
 - Shutdown the router interfaces and then re-enable them starting with the DR, then the BDR, and then all other routers.
 - Reset the OSPF process using the clear ip ospf process privileged EXEC mode command on all routers.

```
R1(config)# interface GigabitEthernet 0/0
R1(config-if)# ip ospf priority 255
R1(config-if)# end
R1#
```


Default Route Propagation **Propagating a Default Static Route in OSPFv2**

The router connected to the Internet that is used to propagate a default route is often called the edge, entrance or gateway router. In an OSPF network, it may also be call the autonomous system boundary router (ASBR).

Default Route Propagation Verifying the Propagated Default Route

```
R2# show ip route | begin Gateway
Gateway of last resort is 209.165.200.226 to network
0.0.0.0
S* 0.0.0.0/0 [1/0] via 209.165.200.226, Loopback0
  172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
0 172.16.1.0/24 [110/65] via 172.16.3.1, 00:01:44,
  Serial0/0/0
C 172.16.2.0/24 is directly connected, GigabitEthernet0/0
L 172.16.2.1/32 is directly connected, GigabitEthernet0/0
c 172.16.3.0/30 is directly connected, Serial0/0/0
L 172.16.3.2/32 is directly connected, Serial0/0/0
0 192.168.1.0/24 [110/65] via 192.168.10.10, 00:01:12,
  Serial0/0/1
   192.168.10.0/24 is variably subnetted, 3 subnets, 2
   masks
0 192.168.10.4/30 [110/128] via 192.168.10.10, 00:01:12,
  Serial0/0/1
           [110/128] via 172.16.3.1, 00:01:12, Serial0/0/0
C 192.168.10.8/30 is directly connected, Serial0/0/1
L 192.168.10.9/32 is directly connected, Serial0/0/1
   209.165.200.0/24 is variably subnetted, 2 subnets, 2
    masks
```

Default Route Propagation **Propagating a Default Static Route in OSPFv3**

Enabling OSPFv3 on the R1 Interfaces

```
R2(config)# ipv6 route ::/0 2001:DB8:FEED:1::2
R2(config)#
R2(config)# ipv6 router ospf 10
R2(config-rtr)# default-information originate
R2(config-rtr)# end
R2#
*Apr 10 11:36:21.995: %SYS-5-CONFIG_I: Configured from console by
console
R2#
```

Verifying the propagated IPv6 default Route

```
R2# show ipv6 route static
IPv6 Routing Table - default - 12 entries
Codes:C -Connected, L - Local, S - Static, U - Per-user Static route
B -BGP, R - RIP, H - NHRP, I1 - ISIS L1
I2 -ISIS L2, IA - ISIS interarea, IS-ISIS summary,D-EIGRP
EX -EIGRP external, ND-ND Default,NDp-ND Prefix,DCE-Destination
NDr -Redirect, O - OSPF Intra,OI-OSPF Inter,OE1-OSPF ext 1
OE2 -OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
S ::/0 [1/0]
via 2001:DE8:FEED:1::2, Loopback0
R2#
```


Fine-tuning OSPF Interfaces OSPF Hello and Dead Intervals

OSPF Hello and Dead intervals must match, or a neighbor adjacency will not occur.

Verifying the OSPF Intervals on R1

```
R1# show ip ospf interface serial 0/0/0 | include Timer
Timer intervals configured, Hello 10, Dead 40, Wait 40,
Retransmit 5
Timer intervals configured, Hello 10, Dead 40, Wait 40,
Retransmit 5
Timer intervals configured, Hello 10, Dead 40, Wait 40,
Retransmit 5
R1#
```

Verifying OSPF Timer Activity

R1 # show	ip	ospf	neighbor			
Neighbor 3.3.3.3 2.2.2.2 R1#	ID	Pri 0 0	State FULL/- FULL/-	Dead Time 00:00:35 00:00:33	Address 192.168.10.6 172.16.3.2	Interface Serial0/0/1 Serial0/0/0

Fine-tuning OSPF Interfaces Modifying OSPF Intervals

Modifying OSPFv2 Intervals

```
R1(config)# interface serial 0/0/0
R1(config-if)# ip ospf hello-interval 5
R1(config-if)# ip ospf dead-interval 20
R1(config-if)# end
R1#
```

Modifying OSPFv3 Intervals

```
R1(config)# interface serial 0/0/0
R1(config-if)# ipv6 ospf hello-interval 5
R1(config-if)# ipv6 ospf dead-interval 20
R1(config-if)# end
R1#
```

Verifying the OSPFv3 interface intervals

```
R2# show ipv6 ospf interface s0/0/0 | include Timer
Timer intervals configured, Hello 5, Dead 20, Wait 20,
Retransmit 5
R2#
R2# R2# show ipv6 ospf neighbor
OSPFv3 Router with ID (2.2.2.2) (Process ID 10)
Neighbor ID Pri State Dead Time Interface ID Interface
3.3.3.3 0 FULL/- 00:00:38 7 Serial0/0/1
1.1.1.1 0 FULL/- 00:00:19 6 Serial0/0/0
R2#
```


Secure OSPF Secure Routing Updates

- When neighbor authentication has been configured on a router, the router authenticates the source of each routing update packet that it receives.
- An authenticating key that is known to both the sending and the receiving route is exchanged.
- OSPF supports three types of authentication:
 - **Null** no authentication.
 - Simple password authentication the password in the update is sent in plaintext over the network (outdated method).
 - MD5 authentication Most secure and recommended method of authentication. Password is calculated using the MD5 algorithm.

Secure OSPF MD5 Authentication

Operation of the MD5 Algorithm

Secure OSPF Configuring OSPF MD5 Authentication

- MD5 authentication can be enabled globally for all interfaces or on a per-interface basis.
- To enable OSPF MD5 authentication globally, configure:
 - ip ospf message-digest-key key
 md5 password (interface configuration command)
 - area *area-id* authentication message-digest (router configuration command)
- To enable MD5 authentication on a per-interface basis, configure:
 - ip ospf message-digest-key key
 md5 password (interface configuration command)
 - ip ospf authentication message-digest (interface configuration command)

1 11 11

Secure OSPF OSPF MD5 Authentication Example

```
R1 (config) # router ospf 10
R1 (config-router) # area 0 authentication message-digest
R1(config-router)# exit
R1 (config) #
*Apr 8 09:58:09.899: %OSPF-5-ADJCHG: Process 10, Nbr 2.2.2.2
on Serial0/0/0 from FULL to DOWN, Neighbor Down: Dead timer
expired
R1 (config) #
*Apr 8 09:58:28.627: %OSPF-5-ADJCHG: Process 10, Nbr 3.3.3.3
on Serial0/0/1 from FULL to DOWN, Neighbor Down: Dead timer
expired
R1 (config) #
R1 (config) # interface GigabitEthernet 0/0
R1(config-if) # ip ospf message-digest-key 1 md5 CISCO-123
R1(config-if) # exit
R1 (config) #
R1 (config) # interface Serial 0/0/0
R1(config-if) # ip ospf message-digest-key 1 md5 CISCO-123
R1(config-if) # exit
R1 (config) #
R1 (config) # interface Serial 0/0/1
R1(config-if) # ip ospf message-digest-key 1 md5 CISCO-123
R1(config-if)#
```

continued

Secure OSPF OSPF MD5 Authentication Example (cont.)

```
R1 (config) # interface GigabitEthernet 0/0
R1(config-if) # ip ospf message-digest-key 1 md5 CISCO-123
R1(config-if) # ip ospf authentication message-digest
R1(config-if) # exit
R1 (config) #
R1 (config) # interface Serial 0/0/0
R1(config-if) # ip ospf message-digest-key 1 md5 CISCO-123
R1(config-if) # ip ospf authentication message-digest
R1(config-if) # exit
R1 (config) #
R1(config) # interface Serial 0/0/1
R1(config-if) # ip ospf message-digest-key 1 md5 CISCO-123
R1(config-if) # ip ospf authentication message-digest
R1(config-if) # exit
R1 (config) #
*Apr 8 10:20:10.647: %OSPF-5-ADJCHG: Process 10, Nbr 2.2.2.2
on Serial0/0/0 from FULL to DOWN, Neighbor Down: Dead timer
expired
R1 (config) #
*Apr 8 10:20:50.007: %OSPF-5-ADJCHG: Process 10, Nbr 3.3.3.3
on Serial0/0/1 from FULL to DOWN, Neighbor Down: Dead timer
expired
R1 (config) #
```

Secure OSPF Verifying OSPF MD5 Authentication

R1# show ip ospf interface serial 0/0/0 Serial0/0/0 is up, line protocol is up Internet Address 172.16.3.1/30, Area 0, Attached via Network Statement Process ID 10, Router ID 1.1.1.1, Network Type POINT TO POINT, Cost: 64 Topology-MTID Cost Disabled Shutdown Topology Name n 64 Base no no Transmit Delay is 1 sec, State POINT TO POINT Timer intervals configured, Hello 5, Dead 20, Wait 20, Retransmit 5 oob-resync timeout 40 Hello due in 00:00:02 Supports Link-local Signaling (LLS) Cisco NSF helper support enabled IETF NSF helper support enabled Index 2/2, flood queue length 0 Next 0x0(0)/0x0(0)Last flood scan length is 1, maximum is 1 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 2.2.2.2 Suppress hello for 0 neighbor(s) Message digest authentication enabled • Youngest key id is 1 R1# R1# show ip ospf interface | include Message Message digest authentication enabled Message digest authentication enabled Message digest authentication enabled R1#

Secure OSPF Verifying OSPF MD5 Authentication (cont.)

Verify the Routing Table on R1

```
R1# show ip route ospf
Codes: L - local, C - connected, S - static, R - RIP,
       M - mobile, B - EGP, D - EIGRP,
       EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1
       E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1,
       L2 - IS-IS level-2, ia - IS-IS inter area,
       * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
       H - NHRP, 1 - LISP
       + - replicated route, % - next hop override
Gateway of last resort is 172.16.3.2 to network 0.0.0.0
0*E2 0.0.0.0/0 [110/1] via 172.16.3.2, 00:33:17, Serial0/0/0
     172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
0
        172.16.2.0/24 [110/65] via 172.16.3.2, 00:33:17, Serial0/0/0
     192.168.1.0/24 [110/65] via 192.168.10.6, 00:30:43, serial0/0/1
0
     192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
        192.168.10.8/30 [110/128] via 192.168.10.6, 00:30:43, Serial0/0/1
0
                        [110/128] via 172.16.3.2, 00:33:17, Serial0/0/0
R1#
```

ospf Trivia

Who designed MD5?

Multiarea OSPF Operation

© 2008 Cisco Systems, Inc. All rights reserved.

Why Multiarea OSPF? Single-Area OSPF

Single-area OSPF is useful in smaller networks. If an area becomes too big, the following issues must be addressed:

- Large routing table (no summarization by default)
- Large link-state database (LSDB)
- Frequent SPF algorithm calculations

Why Multiarea OSPF? Multiarea OSPF

Multiarea OSPF requires a hierarchical network design and the main area is called the backbone area, or area 0, and all other areas must connect to the backbone area.

Why Multiarea OSPF? OSPF Two-Layer Area Hierarchy

Multiarea OSPF is implemented in a two-layer area hierarchy:

Backbone (transit) area

- Area whose primary function is the fast and efficient movement of IP packets.
- Interconnects with other OSPF area types.
- Called OSPF area 0, to which all other areas directly connect.

Regular (nonbackbone) area

- Connects users and resources.
- A regular area does not allow traffic from another area to use its links to reach other areas.

1 11 11

Why Multiarea OSPF? Types of OSPF Routers

Why Multiarea OSPF? Types of OSPF Routers (cont.)

Why Multiarea OSPF? Types of OSPF Routers (cont.)

cisco.

Why Multiarea OSPF? Types of OSPF Routers (cont.)

LSA Type	Description
1	Router LSA
2	Network LSA
3 and 4	Summary LSAs
5	AS External LSA
6	Multicast OSPF LSA
7	Defined for NSSAs
8	External Attributes LSA for Border Gateway Protocol (BGP)
9, 10, or 11	Opaque LSAs

Most common and covered in this course - 1 thru 5

OSPF Routing Tables and Route Types OSPF Routing Table Entries

- O Router (type 1) and network (type 2) LSAs describe the details within an area (the route is intra-area).
- O IA Summary LSAs appear in the routing table as IA (interarea routes)
- O E1 or OE 2 External LSAs external type 1 (E1) or external type 2 (E2) routes

OSPF Routing Tables and Route Types OSPF Routing Table Entries (cont.)

- O Router (type 1) and network (type 2) LSAs describe the details within an area (the route is intra-area)
- O IA Summary LSAs appear in the routing table as IA (interarea routes)
- O E1 or OE 2 External LSAs external type 1 (E1) or external type 2 (E2) routes

R1# show ipv6 route
IPv6 Routing Table - default - 9 entries
Codes:C - Connected, L - Local, S - Static, U-Per-user Static route
B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
12 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP
EX - EIGRF external, ND-ND Default, NDp-ND Frefix, DCE-Destination
NDr - Redirect, O-OSPF Intra, OI-OSPF Inter, OE1-OSPF ext 1
OE2 - OSPF ext 2, ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
OE2 ::/0 [110/1], tag 10
via FE80::2, Serial0/0/0
C 2001:DB8:CAFE:1::/64 [0/0]
via GigabitEthernet0/0, directly connected
L 2001:DB8:CAFE:1::1/128 [0/0]
via GigabitEthernet0/0, receive
O 2001:DB8:CAFE:2::/64 [110/648]
via FE80::2, Serial0/0/0
OI 2001:DB8:CAFE:3::/64 [110/1295]
via FE80::2, Serial0/0/0
C 2001:DB8:CAFE:A001::/64 [0/0]
via Serial0/0/0, directly connected
L 2001:DB8:CAFE:A001::1/128 [0/0]
via serial0/0/0, receive
0 2001:DB8:CAFE:A002::/64 [110/1294]
Via FE80;:2, Serial0/0/0
L FFUU::/8 [U/U]
plf
17 T

OSPFv3 Routing Table Entries

cisco.

OSPF Routing Tables and Route Types OSPF Route Calculation

- 1. All routers calculate the best paths to destinations within their area (intraarea) and add these entries to the routing table.
- 2. All routers calculate the best paths to the other areas within the internetwork (interarea) or type 3 and type 4 LSAs.
- All routers calculate the best paths to the external autonomous system (type 5) destinations. These are noted with either an O E1 or an O E2 route designator.

R1#	show ip route begin Gateway
Gate	way of last resort is 192.168.10.2 to network 0.0.0.0
0*E2	0.0.0.0/0 [110/1] via 192.168.10.2, 00:00:19, serial0/0/0
	10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
C	10.1.1.0/24 is directly connected, GigabitEthernet0/0
L	10.1.1.1/32 is directly connected, GigabitEthernet0/0
c	10.1.2.0/24 is directly connected, GigabitEthernet0/1
L	10.1.2.1/32 is directly connected, GigabitEthernet0/1
0	10.2.1.0/24 [110/648] via 192.168.10.2, 00:04:34, Serial0/0/0
O IA	192.168.1.0/24 [110/1295] via 192.168.10.2, 00:01:48, Serial0/0/0
O IA	192.168.2.0/24 [110/1295] via 192.168.10.2, 00:01:48, Serial0/0/0
	192.168.10.0/24 is variably subnetted. 3 subpets, 2 masks
C	192 168 10 0/30 is directly connected Serial0/0/0
L	192 168 10 1/32 is directly connected, Serial0/0/0
	192.100.10.1/32 18 difectly connected, Serialo/0/0
0	192,108,10,4/30 [110/1294] Via 192,168,10,2, 00:01:55,Seria10/0
R1#	

- Calculate intra-area OSPF routes.
- Calculate best path to interarea OSPF routes.
- Calculate best path route to external non-OSPF networks.

ospf Trivia

How many bits are used to create Areas?

Configuring Multiarea

© 2008 Cisco Systems, Inc. All rights reserved

Configuring Multiarea OSPF Implementing Multiarea OSPF

Implementation Plan Steps

- 1. Gather the network requirements and parameters.
- 2. Define the OSPF parameters.
- 3. Configure OSPF.
- Verify OSPF.

Configuring Multiarea OSPF Configuring Multiarea OSPF

cisco.

Configuring Multiarea OSPF Configuring Multiarea OSPFv3

cisco.

OSPF Route Summarization OSPF Route Summarization

- R1 forwards a summary LSA to the core router C1.
- C1, in turn, forwards the summary LSA to R2 and R3.
- R2 and R3 then forward it to their respective internal routers.

OSPF Route Summarization Interarea and External Route Summarization

Occurs on ABRs and applies to routes from within each area

OSPF Route Summarization Interarea and External Route Summarization (cont.)

Specific to external routes that are injected into OSPF via route redistribution; ASBRs summarize external routes

OSPF Route Summarization Interarea Route Summarization

OSPF Route Summarization Interarea Route Summarization (cont.)

Verify the R1 Routing Table Before S	ummarization
<pre>R1# show ip route ospf begin Gateway Gateway of last resort is not set</pre>	ts, 2 masks , 00:00:49, 2, 00:00:49, 2, 00:00:49,
Serial0/0/0 192.168.10.0/24 is variably subnetted, 3 masks 0 192.168.10.4/30 [110/1294] via 192.16	Verify the R3 Routing Table Before Summarization
00:00:49, Serial0/0/0 R1#	<pre>R3# show ip route ospf begin Gateway Gateway of last resort is not set 10.0.0.0/24 is subnetted, 3 subnets 0 IA 10.1.1.0 [110/1295] via 192.168.10.5, 00:27:14, Serial0/0/1 0 IA 10.1.2.0 [110/1295] via 192.168.10.5, 00:27:14, Serial0/0/1 0 10.2.1.0 [110/648] via 192.168.10.5, 00:27:57, Serial0/0/1 192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks</pre>
	0 192.168.10.0/30 [110/1294] via 192.168.10.5, 00:27:57, Serial0/0/1 R3#

OSPF Route Summarization Calculating the Summary Route

Step 1	Step 2	Some Bits Are Different						
10.1.1.0	00001010.0000001.000000	01.00000000						
10.1.2.0	00001010.0000001.000000	10.0000000						
	First 22 Bits Match							
Step 3								
10.1.1.0 255.255.252.0	00001010.00000001.000000 11111111.11111111	00.0000000 00.00000000						
/22								
10.1.0.0/22 or 10.1.0.0 255.255.252.0								

OSPF Route Summarization Configuring Interarea Route Summarization

Verifying Multiarea OSPF Verifying Multiarea OSPF

The same verification commands are used to verify single-area OSPF and can be used to verify multiarea OSPF:

- show ip ospf neighbor
- show ip ospf
- show ip ospf interface

Commands specific to multiarea information include:

- show ip protocols
- show ip ospf interface brief
- show ip route ospf
- show ip ospf database

Note: For OSPFv3, substitute ip with ipv6.

Verifying Multiarea OSPF Verifying General Multiarea OSPF Settings

R1# show ip protocols									
*** IP Routing is NSF aware ***									
Routing Protocol is "ospf 10"									
Outgoing update filter list for all interfaces is not set									
Incoming update filter list for all interfaces is not set									
Router ID 1.1.1.1									
It is an area border router									
Number of areas in this router is 2. 2 normal 0 stub 0 nssa									
Maximum path: 4									
Routing for Networks:									
10.1.1.1 0.0.0.0 area 1									
10.1.2.1 0.0.0.0 area 1									
192.168.10.1 0.0.0.0 area 0									
Routing Information Sources:									
Gateway Distance Last Update									
3.3.3.3 110 02:20:36									
2.2.2.2 110 02:20:39									
Distance: (default is 110)									
R1#									

R1# show i	p ospf	inter	interface brief							
Interface	PID	Area	IP Address/Mask	Cost	state	Nbrs	F/C			
Se0/0/0	10	0	192.168.10.1/30	64	P2P	1/1				
Gi0/1	10	1	10.1.2.1/24	1	DR	0/0				
Gi0/0	10	1	10.1.1.1/24	1	DR	0/0				
R1#										

Verifying Multiarea OSPF Verify the OSPF Routes

R1 # show ip route ospf begin Gateway Gateway of last resort is not set								
10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks 0 10.2.1.0/24 [110/648] via 192.168.10.2, 00:26:03, serial0/0/0								
O IA 192.168.1.0/24 [110/1295] via 192.168.10.2, 00:26:03, serial0/0/0 O IA 192.168.2.0/24 [110/1295] via 192.168.10.2, 00:26:03, serial0/0/0								
192.168.10.0/24 is variably subnetted,3 subnets,2 masks 0 192.168.10.4/30 [110/1294] via 192.168.10.2, 00:26:03, Serial0/0/0 R1#								

Verifying Multiarea OSPF Verifying the Multiarea OSPF LSDB

Verifying the OSPF LSDB on R1								
R1# show ip	o spf databas OSPF Router	e with I	D (1.1.1.1)	(Process]	ID 10)			
Link ID 1.1.1.1 2.2.2.2 3.3.3.3 Link ID 10.1.1.0 10.1.2.0 192.168.1.0 192.168.2.0	Router ADV Router 1.1.1.1 2.2.2.2 3.3.3.3 Summary N ADV Router 1.1.1.1 1.1.1.1 3.3.3.3 3.3.3.3	Link : Age 725 695 681 et Lir Age 725 725 681 681	States (Area Seq# 0x80000007 0x80000005 0x80000005 0k States (An Seq# 0x80000006 0x80000005 0x80000005 0x80000006	0) Checksum 0x00F9B0 0x003DB1 0x00FF91 cea 0) Checksum 0x00D155 0x00C85E 0x00724E 0x006957	Link count 2 5 2			
Link ID 1.1.1.1 Link ID 10.2.1.0 192.168.1.0 192.168.2.0 192.168.10.0 192.168.10.4 R1#	Router ADV Router 1.1.1.1 Summary N ADV Router 1.1.1.1 1.1.1.1 1.1.1.1 1.1.1.1 1.1.1.1	Link : Age 725 et Lir Age 725 725 725 725 725 725	States (Area Seq# 0x80000006 nk States (An Seq# 0x80000005 0x80000005 0x80000005 0x80000005 0x80000005	1) Checksum 0x007D7C cea 1) Checksum 0x004A9C 0x00B593 0x00B593 0x00B3D0 0x00B3D0 0x000E32	Link count 2			

Verifying Multiarea OSPF Verifying Multiarea OSPFv3

R1# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 10"
Router ID 1.1.1.1
Area border router
Number of areas: 2 normal, 0 stub, 0 nssa
Interfaces (Area 0):
Serial0/0/0
Interfaces (Area 1):
GigabitEthernet0/0
Redistribution:
None
R1ŧ

R1# show ig	pv6 ospf	inter	face brief						
Interface	PID	Area		Intf	ID	Cost	State	Nbrs	F/C
Se0/0/0	10	0		6		647	P2P	1/1	
Gi0/0	10	1		3		1	DR	0/0	
R1#									

Verifying Multiarea OSPF Verifying Multiarea OSPFv3 (cont.)

ospf Trivia

Did Chuck Norris in fact invent the internet?

Cisco | Networking Academy[®] Mind Wide Open[™]