
  

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1 of 22 

White Paper 

 
Embedded Event Manager (EEM) on the Cisco Catalyst 6500 Series 
 

1. INTRODUCTION 

With Cisco® IOS® Software Release 12.2(18)SXF4, Cisco IOS Software with Software Modularity became a reality. While the Software 

Modularity aspect is the most obvious enhancement of this release, there is also another key feature in this software version, which could 

enhance and revolutionize the scope of operational management in customer’s networks for the Cisco Catalyst® 6500 Series.  

Embedded Event Manager (EEM) is a policy-based framework that provides a way to monitor key system events and then act on those 

events through a set policy. The policy is, quite simply, a preprogrammed script loaded by the administrator, which defines actions that  

the switch should invoke based on set events occurring. The script can generate actions, including, but not limited to, generating custom 

SYSLOG or SNMP traps, invoking CLI commands, forcing a failover, and much more.  

This paper will provide an insight into EEM as it is architected on the Catalyst 6500. 

2. WHAT IS EEM, AND HOW CAN IT BE USED? 

EEM is a flexible programmable policy based framework that allows an administrator to customize a script to invoke an action based on a 

given set of events occurring. The basic makeup of the EEM facility on the Catalyst 6500 is shown in Figure 1. 

Figure 1.   Basic EEM Architecture 

 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 2 of 22 

The essence of how EEM operates is summarized as follows. A system event occurs that is picked up by an event detector. What is an 

event? It could be when a specific SYSLOG message is generated, or when a certain command is executed on the CLI, or if a given counter 

exceeds a set threshold, when a line card is inserted, or when an SSO failover is initiated. In fact, these are just a few examples of the many 

events that can be generated. EEM incorporates a number of event detectors, which are subsystem processes designed to monitor the 

system for those key events. The given event detector alerts the EEM subsystem and passes relevant information to it regarding the event. 

A predefined script that is created by the administrator and registered with EEM is started, which will use the event information to invoke a 

given action on the switch.  

EEM provides for two types of scripts that can be used as the criteria for invoking actions based on given events occurring. A script that is 

entered via the CLI is one form of script supported by EEM. This form of script is known as an applet. The second form of script supported 

is a TCL script. Support for TCL in the Catalyst 6500 EEM subsystem is based on TCL v8.3.4. This is the same version of TCL used for 

TCL Shell in Cisco Router IOS Software. While applet-based scripts provide an easy option from which to load a script onto the switch, it 

is with TCL where the more flexible (and powerful) scripts can be developed. Both script options are discussed in more detail later in this 

paper. 

3. EEM ARCHITECTURE ON THE CATALYST 6500 

The version of EEM used on the Catalyst 6500 Cisco IOS Software Release 12.2(18)SXF4 is based on EEM V2.1.5. This version 

combines a number of elements that make up the entire EEM feature. Each of the EEM elements found on the Catalyst 6500 is detailed in 

Figure 2. 

Figure 2.   EEM Detailed Architecture View 

 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 3 of 22 

  

This version of EEM initially provides support for 13 event detectors, although more event detectors will become available with future 

releases of the Catalyst 6500 Cisco IOS Software. Each event detector is a separate subsystem in itself and is responsible for interfacing 

between the publisher of an event and the Event Manager Server. Each of the supported event detectors in this initial Cisco IOS Software 

release is detailed in the following list. 

● Application Event Detector: Administrator configured policies registered to the EEM subsystem can publish their own events 

using this event detector; this gives a policy the ability to trigger another policy to execute. 

● CLI Event Detector: When a CLI command is entered from the console that matches a pre defined CLI command defined by  

the administrator, then this event detector can generate an event. This event typically uses a pattern match to look for the specific 

command in order to trigger an event  

● Counter Event Detector: Should the value of a designated counter identified within a policy change, then this event detector  

can generate an event. An example is policy “A” increments a counter, and when that counter exceeds a threshold then policy “B” 

is invoked. 

● Interface Counter Event Detector: When a threshold (absolute or incremental) for a specific port counter is crossed, then this 

event detector can generate an event. This provides an easier way to track interface statistics. The interface counters that are 

supported include: ◦ Input Errors  ◦ Input Errors CRC ◦ Input Errors Frame ◦ Input Errors Overrun ◦ Input Packets Dropped ◦ Interface Resets ◦ Output Buffer Failures ◦ Output Buffer Swapped Out ◦ Output Errors Underrun ◦ Output Errors ◦ Output Packets Dropped ◦ Receive Broadcasts ◦ Receive Giants ◦ Receive Rate PPS ◦ Receive Rate BPS ◦ Receive Runts ◦ Receive Throttle ◦ Reliability ◦ RX Load ◦ TX Load ◦ Transmit Rate PPS ◦ Transmit Rate BPS 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 4 of 22 

● Cisco IOS Software Watchdog Event Detector: This event detector publishes an event when one of the following occurs: ◦ CPU Utilization for an Cisco IOS Software process crosses a threshold ◦ Memory use for an Cisco IOS Software process crosses a threshold ◦ Total available system memory crosses a threshold ◦ Total used system memory crosses a threshold ◦ Total system CPU crosses a threshold 

● System Monitor Event Detector: Should an Cisco IOS Software memory leak occur or a deadlock or loop occur in an Cisco IOS 

Software task (that is, an Cisco IOS Software modular process), this detector will generate an event. 

● None Event Detector: This event detector is used as a placeholder for policies that are manually triggered through the “event 

manager run” command on the switch CLI. 

● OIR Event Detector: This event detector will monitor the system for hardware (such as line cards and so on) that are inserted or 

removed and, should this occur, generate an event. 

● Redundancy Framework Event Detector: Hardware or software high availability events related to an SSO failover, or any 

redundancy framework state transition will cause this event detector to generate an event. 

● SNMP Event Detector: Allows an SNMP object to be polled at a regular interval, and when the value of the object matches a 

specified value, an event is generated.  

● System Manager Event Detector: When a Cisco IOS Software modularity process is stopped (normally or abnormally) or is 

started, then this event detector will generate an event. 

● SYSLOG Event Detector: This event detector will generate an event when a set SYSLOG message is generated. Regular 

Expressions can be used to match on part of a SYSLOG message to generate the event. This detector also allows a match  

on a number of patterns matching before generating an event (for example, if SYSLOG message x occurs within 5 minutes,  

then generate an event). 

● Timer Event Detector: Used to generate an event based on one of the following four timer events: ◦ An absolute time of day timer ◦ A countdown timer that publishes an event when the value hits 0 ◦ A watchdog timer that publishes an event when the timer counts to 0, upon which it resets itself and begins the cycle again ◦ A CRON timer that uses a UNIX-based CRON specification to indicate when an event should be published  

The EEM Server performs the role of the central information repository for EEM managing event registration and policy execution. It 

provides a means to handle event requests such as the creation, registration, and removal of events, as well as an ability to store persistent 

data that can be referenced by an active and running policy. It also offers a way for multiple policies to interface with one another, allowing 

them exchange data. 

As a server, it incorporates two APIs (application programmable interfaces). One of these APIs ties into the event detector processes, 

allowing it to communicate with each of the detectors when an event is registered on the system. The second API is used to communicate 

with the EEM policy director, which is the repository for registered policies.  

The EEM policy director is a process that is used to accept and register user built scripts to the EEM subsystem and is summarized in 

Figure 3.  



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 5 of 22 

Figure 3.   EEM Policy Director 

 

Finally, there are the EEM policies themselves. We have already identified two forms of polices, those being the applets and TCL scripts. 

There are two types of TCL scripts, namely user written scripts and Cisco Systems® written TCL scripts (otherwise known as a mandatory 

policy) which are embedded within the Cisco IOS Software image. Mandatory policies are automatically enabled on system startup; 

however, a specific mandatory policy can be individually disabled form the switch CLI. Both the TCL scripts and the applets have a set 

number of actions that they can invoke. These actions include the following. 

● Execute an Cisco IOS Software CLI command and receive the result 

● Send a CNS event 

● Log a message to SYSLOG 

● Send an e-mail or system page 

● Increment or decrement an EEM counter 

● Force a failover to the SSO (Stateful Switchover) standby supervisor 

● Request system information 

● Invoke another EEM policy to be started 

● Reload the switch 

● Send an SNMP trap with custom data 

● Publish an application specific EEM event 

● Run a TCL script 

The following sections will provide more detail on adding applets and TCL scripts to the switch. 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 6 of 22 

4. EEM APPLETS 

While the applets functionality does not match what a TCL script can do, it does provide a simple way for a policy to be created from the 

switch CLI and registered with the switch.   

The applet is initially created using the following command: 

[no] event manager applet <applet-name> 

 

For an applet (or TCL script) to function, it must be registered with the EEM policy director. The notion of creating an applet from the CLI 

using the above command also inherently registers the applet with EEM at the same time. Once this command is entered, the system moves 

the user into applet configuration mode, where additional applet commands can be entered. There are essentially three configuration 

commands that can then be entered. These include the following. 

[no] event <event-type> 

[no] action <label> <action-type> 

[no] set <label> <var-name> <value> 

 

For any configured applet only one “event” command can be entered. The event command identifies the event detector that this applet is 

working with. If there is no “event” command configured, a warning message is posted when exiting the event configuration mode, and the 

applet is not registered. The action statement indicates the action that should be invoked should there be a match to the configured event. 

The command can be used to set environment variables that might be referenced in this applet. Environment variables are discussed later in 

this paper. 

Let us take a look at how an applet can be configured. The first task is to define an applet in configuration mode as follows: 

C6500(config)# event manager applet my_applet  

C6500(config-applet)# 

This command creates an applet called “my_applet” and registers it with the EEM policy director. It also places the user into applet 

configuration mode where subsequent configuration commands can be entered. The next step of this applet configuration requires an event 

command to be configured. The event command options available are shown in the following command output. 

C6500(config-applet)# event ?  

  Application  Application specific event 

  Cli          CLI event 

  Counter      Counter event 

  Gold         GOLD event 

  Interface    Interface event 

  Ioswdsysmon  IOS WDSysMon event 

  None         Manually run policy event 

  Oir          OIR event 

  Process      System Manager event 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 7 of 22 

  Rf           Redundancy Facility event 

  Snmp         SNMP event 

  Syslog       Syslog event 

  Timer        Timer event 

  Wdsysmon     WDSysMon event 

 

For this example, we will use the CLI event detector to look for a pattern match on a CLI command as shown in the following example. 

C6500(config-applet)# event cli pattern "conf t" ?                 

  occurs  The number of occurrences before raising the event 

  period  Number of occurrences must occur within this time period 

  skip    Whether to skip CLI command execution 

  sync    CLI and EEM policy execution sync or async 

C6500(config-applet)# event cli pattern "conf t" sync ?  

  No      Policy and CLI will run asynchronously 

  Yes     Run policy and the result determines whether to run CLI 

C6500(config-applet)# event cli pattern "conf t" sync no ?  

  Occurs  The number of occurrences before raising the event 

  Period  Number of occurrences must occur within this time period 

  Skip    Whether to skip CLI command execution 

C6500(config-applet)# event cli pattern "conf t" sync no skip ?  

  No      CLI command should be executed 

  Yes     CLI command should not be executed 

C6500(config-applet)# event cli pattern “conf t” sync no skip no  

 

This command calls the CLI event detector to monitor the CLI and look for a command that matches the pattern “conf t.” This command is 

used when an administrator enters configuration mode.  

Once an event command is configured, a corresponding action command is required to be configured to determine what happens when this 

applet detects the string “conf t” on the CLI. The available actions are shown in the following CLI output. 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 8 of 22 

C6500(config-applet)# action 1.0 ?  

  Cli               Execute a CLI command 

  cns-event         Send a CNS event 

  counter           Modify a counter value 

  force-switchover  Force a software switchover 

  info              Obtain system specific information 

  mail              Send an e-mail 

  policy            Run a pre-registered policy 

  publish-event     Publish an application specific event 

  reload            Reload system 

  snmp-trap         Send an SNMP trap 

  syslog            Log a syslog message 

 

In our example we are simply going to put a message on the console using SYSLOG as follows: 

C6500(config-applet)# action 1.0 syslog msg "Configuration by Authorized personnel ONLY" 

 

Should the word “conf t” be detected on the CLI, a SYSLOG message will be generated alerting the user that only authorized personnel are 

allowed to enter configuration mode. It is worth noting that the “1.0” is a label used to uniquely identify this action command. If there were 

a requirement to configure multiple actions for this event, then the subsequent action commands would need a unique label as in the 

following example. 

C6500(config-applet)# event cli pattern “conf t” sync no skip no  

C6500(config-applet)# action 1.0 syslog msg etc etc  

C6500(config-applet)# action 2.0 etc etc  

C6500(config-applet)# action 3.0 etc etc  

 

The administrator would then exit out of applet configuration mode. The applet is added to the current switch configuration and can be 

viewed as follows: 

C6500#show run | begin event  

event manager applet my_applet  

 event cli pattern "conf t" sync no skip no 

 action 1.0 syslog msg "Configuration by Authorized Personnel ONLY" 

! 

end 

 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 9 of 22 

EEM also provides a way to confirm that the entered applet has been registered and correctly entered. This is shown in the following show 

command set. 

C6500#show event manager policy registered   

No.  Class   Type    Event Type Trap  Time Registered          Name 

1    applet  system  cli        Off   Thu Jan 12 02:43:57 2006  my_applet 

 pattern {conf t} sync no skip no 

 action 1.0 syslog msg "Configuration by Authorized Personnel ONLY" 

 

Finally, the applet can be seen in action when an administrator enters configuration mode using the “conf t” command set.  

This is shown below. 

C6500#conf t  

Enter configuration commands, one per line.  End with CNTL/Z. 

C6500(config)# 

3w2d: %HA_EM-6-LOG: my_applet: Configuration by Authorized Personnel ONLY  

5. EEM TCL SCRIPTS 

While applets provide for a simple and effective method for adding basic scripts to the system, it is with TCL scripts where the true power 

and flexibility of EEM become evident.  TCL (or Tool Control Language) is a string-based command language that is interpreted at 

runtime (in much the same way as the “BASIC” programming language), rather than being compiled in a traditional programming sense. 

The EEM subsystem support for TCL is based on TCL v8.3.4 and contains the full complement of commands available with that release 

along with a number of TCL command extensions designed specifically for the Catalyst 6500 system.  

The EEM architecture incorporates two operational levels within with a TCL script can run. These levels, in many respects, provide a 

mechanism to protect the switch from user-based scripts inadvertently accessing system resources that could override the integrity of a 

running system. Cisco mandatory scripts run in what is referred to as full TCL mode. This mode provides full access to all of the switch’s 

resources. User-built scripts, however, run in what is referred to as safe TCL mode. (See Figure 4.) 

Figure 4.   TCL Execution Modes on the Catalyst 6500 

 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 10 of 22 

The “safe TCL script” mode of operation runs the script inside a “safe interpreter,” isolating it from other applications. The execution of 

scripts in safe TCL mode is under the control of a master interpreter allowing it to control the service requests made by the running script. 

The safe TCL mode allows Cisco to disable or customize individual TCL commands, thus providing a means to protect the system from a 

runaway script. This mode also allows the administrator to totally disable user-based TCL scripts from the CLI using a single command. It 

is possible to modify a Cisco mandatory policy, but doing so requires the user to move the modified policy to the user directory and run it 

in safe TCL mode.  

Furthermore, an additional level of security is implemented for those scripts that invoke a CLI command. EEM provides a command that 

allows the specification of the Cisco IOS Software user ID, allowing a TACACS+ command authorization service to be used.  

Environment variables are commonly used by this TCL scripting feature. An environment variable is a global variable that is set outside of 

the TCL script, but one that can be referenced from within the script. These variables provide a useful vehicle for the script to learn more 

about the system within which it is operating and to learn more about the environment that triggered an event. There are a couple of types 

of environment variables that exist and these include: 

● User-defined environment variables that are defined by a user 

● Cisco defined environment variables that are either defined by Cisco or created for a specific policy 

The event manager environment command is used to set environment variables on the switch. All Cisco defined environment variables 

start with an underscore (“_”). This is a reserved character and cannot be used by users when defining their own variables. There are a 

number of Cisco defined environment variables available, all of which are documented in the Cisco IOS Software manuals on Cisco.com, 

but a few of these are listed in Table 1 for the purposes of giving examples of what information they can provide. This is not a complete list 

of variables available. Please refer to the EEM documentation on Cisco.com for a more exhaustive list. 

Table 1. Example Environment Variables 

Script Action Environment Variable Variable Purpose 

_email_server Used to identify the IP address of the SMNP server used when e-mails are sent 
from within a script 

_email_to Used to identify the recipient of the sent e-mail 

Want to send an e-mail from within a script 

_email_from Used to identify the originator of the sent e-mail 

_counter_name Inspect the name of the counter Inspect the counter event detector 

_counter_value Check the reference point value of the counter  

_snmp_oid Identify the MIB object being interrogated Check an SNMP MIB object 

_snmp_oid_value Contains the value of the SNMP MIB object 

 

 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 11 of 22 

Environment variables that have been set on the switch can be interrogated using the following command. 

C6500#show event manager environment all  

No.  Name                          Value                          

1    _crash_reporter_url           http://165.22.30.31/cr/interf 

2    _email_server                 10.46.11.23                  

3    _email_from                   eem@cisco.com                  

4    _email_to                     techo@cisco.com              

5    pingcheck_freq                30                             

6    pingcheck_addr                10.1.1.1                        

<..> 

When building a TCL script, it is important to note that while any of the TCL script commands can be used within the script, the script 

itself must start off with an event_register command. This command is used to tell the EEM server what event is used to trigger the policy. 

The available commands for this purpose are listed below. 

● event_register_apl 

● event_register_cli 

● event_register_counter 

● event_register_interface 

● event_register_ioswdsysmon 

● event_register_none 

● event_register_oir 

● event_register_process 

● event_register_rf 

● event_register_snmp 

● event_register_syslog 

● event_register_timer 

● event_register_wdsysmon 

 

An example of using this within a script is shown below. 

::cisco::eem::event_register_cli occurs 1 pattern “conf t" 

This example calls on the CLI event detector to look for a single instance (identified by the “occurs 1” string) of the “conf t” command. 

Following this command, standard TCL commands apply and can be written to invoke an action for that given event.  

Once the TCL script has been written, it must be loaded on the switch and registered with the EEM policy director. Prior to loading it on 

the switch, a directory must be created on the switch file system, and this directory must also be registered with the EEM policy director. 

An example of this is shown with the following command example. 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 12 of 22 

C6500#mkdir USER_TCL    

Create directory filename [USER_TCL]?  

Created dir disk0:USER_TCL 

 

C6500#dir disk0:  

Directory of disk0:/ 

    1  drw-           1  Oct 18 2005 01:14:07 +00:00  USER_TCL 

47843328 bytes total (47843327 bytes free) 

 

Now that the directory has been created, it must be registered with the EEM policy director. This is achieved using the event manager 

directory command as follows. 

C6500#conf t  

Enter configuration commands, one per line.  End with CNTL/Z. 

C6500(config)# event manager directory user policy disk0:/USER_TCL  

C6500(config)#^Z 

C6500#show event man dir user policy   

disk0:/USER_TCL 

 

The directory is registered with this command and is now ready for TCL scripts to be loaded into it. The process of loading, registering and 

executing the script is shown in the following sequence of commands. First the TCL script is copied onto the switch as follows. 

C6500#copy tftp disk0:  

Address or name of remote host []? 10.66.240.46  

Source filename []? sample.tcl  

Destination filename [cfgSave.tcl]? USER_TCL/sample.tcl  

Accessing tftp://10.66.240.46/sample.tcl...! 

1232 bytes copied in 0.620 secs (1987 bytes/sec) 

C6500# 

 

After copying the TCL script to the switch, it must be registered to the EEM policy director with the event manager policy command as 

follows. 

C6500#conf t  

Enter configuration commands, one per line.  End with CNTL/Z. 

C6500(config)#event manager policy sample.tcl type user 

 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 13 of 22 

Confirmation that the TCL script has been registered can be achieved using the following show command.  

C6500 # show event manager policy registered  

No.  Type    Event Type          Trap  Time Registered           Name 

1    user    cli                 Off   Thu Jan12  15:18:16 2006  sample 

 occurs 1 pattern 

 nice 0 priority normal maxrun 90.000 

 

The script is now loaded, registered, and primed for execution when the respective event detector generates the given event. 

6. TCL SCRIPT EXAMPLE 

The previous section provided details on the TCL support found in the Catalyst 6500, and how a TCL script can be loaded and registered 

with the system. We will now explore in more detail a sample TCL script providing some insight into the interaction between the script and 

the system. 

The example script we shall explore is one that monitors the system for an interface down, and upon identifying this situation, will run a 

TDR diagnostics command on that interface, capture the show interface output, and send an e-mail to the administrator. The full script is 

shown in Figure 5. 

Figure 5.   Sample TCL Script 

1. ::cisco::eem::event_register_syslog occurs 1 pattern $_syslog_pattern maxrun 90 

2. #------------------------------------------------------------------ 

3. # EEM policy to monitor for a specified syslog message. 

4. # Designed to be used for syslog interface-down messages.   

5. # When event is triggered, a TDR check, Interface counters, and  

6. # the optional given config commands will be run. 

7.  # 

8.  # January 2006 ISBU TME Team 

9.  # 

10.  # Copyright (c) 2006 by cisco Systems, Inc. 

11.  # All rights reserved. 

12.  #------------------------------------------------------------------ 

13.  ### The following EEM environment variables are used: 

14.  ### 

15.  ### _syslog_pattern (mandatory)        - A regular expression pattern match string  

16.  ###                                      that is used to compare syslog messages 

17.  ###                                      to determine when policy runs  



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 14 of 22 

18.  ### Example: _syslog_pattern             .*UPDOWN.*FastEthernet0/0.*  

19.  ### 

20.  ### _router_name (mandatory)           - A string used to indicate the name of 

21.  ###                                      the device you are working on and emails 

22.  ###                                      sent out will be tagged with this name 

23.  ###                                      sevt-pod1 

24.  ### 

25.  ### _email_server (mandatory)          - A Simple Mail Transfer Protocol (SMTP) 

26.  ###                                      mail server used to send e-mail. 

27.  ### Example: _email_server               mailserver.customer.com 

28.  ### 

29.  ### _email_from (mandatory)            - The address from which e-mail is sent. 

30.  ### Example: _email_from                 devtest@customer.com 

31.  ### 

32.  ### _email_to (mandatory)              - The address to which e-mail is sent. 

33.  ### Example: _email_to                   engineering@customer.com 

34.  ### 

35.  ### _email_cc (optional)               - The address to which the e-mail must 

36.  ###                                      be copied. 

37.  ### Example: _email_cc                   manager@customer.com 

38.  ### 

39.  ### _config_cmd1 (optional)            - The first configuration command that 

40.  ###                                      is executed. 

41.  ### Example: _config_cmd1                interface Ethernet1/0  

42.  ### 

43.  ### _config_cmd2 (optional)            - The second configuration command that 

44.  ###                                      is executed. 

45.  ### Example: _config_cmd2                no shutdown 

46.  ### 

47.  # check if all the env variables we need exist 

48.  # If any of them doesn't exist, print out an error msg and quit 

49.  if {![info exists _email_server]} { 

50.  set result \ 

a.  "Policy cannot be run: variable _email_server has not been set" 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 15 of 22 

51.  error $result $errorInfo 

52.  } 

53.  if {![info exists _router_name]} { 

54.  set result \ 

a.  "Policy cannot be run: variable _router_name has not been set" 

55.  error $result $errorInfo 

56.  } 

57.  if {![info exists _email_from]} { 

58.  set result \ 

a.  "Policy cannot be run: variable _email_from has not been set" 

59.  error $result $errorInfo 

60.  } 

61.  if {![info exists _email_to]} { 

62.  set result \ 

a.  "Policy cannot be run: variable _email_to has not been set" 

63.  error $result $errorInfo 

64.  }          

65.  if {![info exists _email_cc]} { 

66.  #_email_cc is an option, must set to empty string if not set. 

67.  set _email_cc "" 

68.  } 

69.  namespace import ::cisco::eem::* 

70.  namespace import ::cisco::lib::* 

71.  # 1. query the information of latest triggered eem event 

72.  array set arr_einfo [event_reqinfo] 

73.  if {$_cerrno != 0} { 

74.  set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \ 

a.  $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str] 

75.  error $result  

76.  } 

77.  set msg $arr_einfo(msg) 

78.  set config_cmds "" 

79.  if {[regexp {.*Interface (.*),.*} $msg \ 

80.  match intf_match]} { 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 16 of 22 

81.  } 

82.  # 2. execute the user-defined config commands 

83.  if [catch {cli_open} result] { 

84.  error $result $errorInfo 

85.  } else { 

86.  array set cli1 $result 

87.  }  

88.  if [catch {cli_exec $cli1(fd) "en"} result] { 

89.  error $result $errorInfo 

90.  }  

91.  if [catch {cli_exec $cli1(fd) "test cable-

diagnostics tdr interface $intf_match"} result] { 

92.  error $result $errorInfo 

93.  } 

94.  if [catch {cli_exec $cli1(fd) "show interface $intf_match counters errors"} result] { 

95.  error $result $errorInfo 

96.  } else { 

97.  set cmd1_output $result 

98.  } 

99.  after 5000 

100.  if [catch {cli_exec $cli1(fd) "show cable-

diagnostics tdr interface $intf_match"} result] { 

101.  error $result $errorInfo 

102.  } else { 

103.  set cmd2_output $result 

104.  } 

105.  if [catch {cli_exec $cli1(fd) "config t"} result] { 

106.  error $result $errorInfo 

107.  }  

108.  if {[info exists _config_cmd1]} { 

109.  if [catch {cli_exec $cli1(fd) $_config_cmd1} result] { 

a.  error $result $errorInfo 

110.  } 

111.  append config_cmds $_config_cmd1 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 17 of 22 

112.  } 

113.  if {[info exists _config_cmd2]} { 

114.  if [catch {cli_exec $cli1(fd) $_config_cmd2} result] { 

a.  error $result $errorInfo 

115.  }  

116.  append config_cmds "\n" 

117.  append config_cmds $_config_cmd2 

118.  } 

119.  if [catch {cli_exec $cli1(fd) "end"} result] { 

120.  error $result $errorInfo 

121.  }  

122.  if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] { 

123.  error $result $errorInfo 

124.  }  

125.  after 1000 

126.  # 3. send the notification email 

127.  if [catch {smtp_subst $intchk_template} result] { 

128.  error $result $errorInfo 

129.  } 

130.  if [catch {smtp_send_email $result} result] { 

131.  error $result $errorInfo 

132.  } 

133.  # open a cli connection 

134.  if [catch {cli_open} result] { 

135.  error $result $errorInfo 

136.  } else { 

137.  array set cli $result;138.  } 

 

The first line of the script includes the mandatory EEM configuration line as follows: 

::cisco::eem::event_register_syslog occurs 1 pattern $_syslog_pattern maxrun 90 

This line identifies the script will use the SYSLOG Event Detector to parse SYSLOG messages for a pattern match that is defined by the 

value set in the environment variable “_syslog_pattern.”  A quick look at the CLI shows that the administrator has set the environment 

variable as “LINK-3-UPDOWN.*state to down” as shown in the following output. 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 18 of 22 

C6500#show event manager environment _syslog_pattern  

LINK-3-UPDOWN.*state to down 

 

Following the first line is a series of comment lines (line 2 through to line 48), which describe the purpose of the script, date of script, 

author, copywrite information, and environment variables that are used in the script. While not mandatory, it is good documentation 

practice to document information relevant to this script at the beginning. 

Lines 49 through to 68 check that each of the required environment variables has been set by the administrator prior to executing any 

subsequent TCL statements. If any one of the environment variables has not been set then the script will print out an error message on the 

console and cease to run. A quick check from the switch CLI can also confirm that each of the environment variables has been set. This is 

shown in the following CLI output. 

C6500#show event manager environment all  

No.  Name                          Value                          

1    _email_server                 10.200.1.1                  

2    _email_from                   eem@cisco.com                  

3    _email_to                     admin@abcxyz.com              

4    _router_name                  C6500               

 

All of the mandatory environment variables have been set, so the script will continue to execute subsequent statements.  

The “namespace” commands at lines 69 and 70 are used to import environment extensions that can be used by policy developers. The EEM 

namespace imports the commands in Table 2. 

Table 2. EEM Namespace Imported Keywords 

Category Description 

EEM Event Registration Keywords Adds support for event_register keywords such as event_register_cli, event_register_counter, 
event_register_interface, event_register_snmp, and many more 

EEM Event Information Keywords Adds support for event_reqinfo 

EEM Event Publish Keywords Adds support for the event_publish keyword 

EEM Action Keywords Adds keywords like action_reload, action_script, action_snmp_trap, action_syslog, and many more 

EEM Utility Keywords Support for utility keywords like timer_arm, timer_cancel, register_counter, and many more 

EEM Context Library Support for context_save and context_retrieve 

EEM System Information 
Keywords 

Support for sys_reqinfo_snmp, sys_reqinfo_routername, and many more 

CLI Library Keywords Adds cli_open, cli_exec, cli_read, cli_write, and many more 

 

The second namespace that is imported is the cisco::lib namespace, which adds support for SMTP related commands such as 

smtp_send_email. Should any of these commands be required to be executed in your TCL script, the associated namespace must be 

imported in the script. 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 19 of 22 

Statements following the above are directly related to the actions that the policy invokes on the generation of the event. Lines 71 through 

81 query the triggered event and set local variables with information related to that event. The reference to “Cerrno” relates to a Cisco error 

number generated by the switch when the event occurs. Whenever the “_cerrno” variable is set, four other TCL global variables, namely 

“_cerr_sub_num,” “_cerr_sub_err,” “_cerr_posix_err,” and “_cerr_str,” are derived from “_cerrno” and are also set. 

Lines 82 through to 98 invoke a set of commands to run on the switch. To do this, the script opens access to the CLI and sends three 

commands to it, namely those in the list below. 

1. en (shortcut for enable) to gain access to the configuration mode 

2. test cable-diagnostics tdr interface $intf_match (variable matches the interface that went down) 

3. show interface $intf_match counters errors 

Following the execution of these commands, the script waits 5 seconds (indicated by the command on line 99) and executes a command to 

show the results of the TDR command run (indicated in line 100). 

Subsequent to this, the script offers two additional commands to be executed should the respective environment variables be set. Lines 105 

through to 121 reference two environment variables (config_cmd1 and config_cmd2) to see if they have been set. If so, then they too are 

executed from the CLI. After these two commands have been interrogated for execution, access to the CLI is then closed for this script.  

The script then waits one second (indicated by line 125) and then sends an e-mail alert using the commands from lines 126 through to 138. 

The e-mail is sent to the e-mail address set in the environment variable “_email_to” via the e-mail server indicated in the environment 

variable “_email_server.”  

The output of this script is shown below. On the CLI, when an interface is shutdown, the following is an example of what will be seen. 

1d17h: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet2/1,  

changed state to down 

1d17h: %LINK-3-UPDOWN: Interface GigabitEthernet2/1, changed state to down 

 

Note that the second message contains the “Link-3-Updown” message that the event detector is looking for. The script is kicked  

into action, and the resulting e-mail that is sent contains the output from the TDR run. An example of what the e-mail looks like  

is shown below. 



 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 20 of 22 

From:  eem@cisco.com  

To:  techo@cisco.com  

Subject: Interface Gigabit 2/1 has gone down on C6500 

Port        Align-Err    FCS-Err   Xmit-Err    Rcv-Err UnderSize OutDiscards 

Gi2/1               0          0          0          0         0           0 

Port      Single-Col Multi-Col  Late-Col Excess-Col Carri-Sen     Runts    Giants 

Gi2/1              0         0         0          0         0         0         0 

Port       SQETest-Err Deferred-Tx IntMacTx-Err IntMacRx-Err Symbol-Err 

Gi2/1                0           0            0            0          3 

C6500# 

TDR test last run on: January 12 11:22:46 

Interface Speed Pair Cable length        Distance to fault   Channel Pair status 

--------- ----- ---- ------------------- ------------------- ------- ------------ 

Gi2/1     auto  1-2  N/A                 N/A                 Invalid Terminated   

                3-4  N/A                 N/A                 Invalid Terminated   

                5-6  N/A                 N/A                 Invalid Terminated   

                7-8  N/A                 N/A                 Invalid Terminated   

7. SUMMARY 

Embedded Event Manager in the Catalyst 6500 provides network administrators with a flexible framework upon which to significantly 

enhance the operational manageability of those switches. The programmable nature of this policy-based framework allows customers to 

apply unique policy rules to meet local management requirements while at the same time ensuring that those policies can be enacted in a 

time saving manner. This can help to provide the administration team with more real time information that can lead to better problem 

identification and resolution.  

 

 

 

 

 

 

 

 

 

 

mailto:eem@cisco.com
mailto:techo@cisco.com


 

All contents are Copyright © 1992–2006 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 21 of 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Printed in USA C11-366432-00    09/06 


	Embedded Event Manager (EEM) on the Cisco Catalyst 6500 Series
	1. INTRODUCTION
	2. WHAT IS EEM, AND HOW CAN IT BE USED?
	3. EEM ARCHITECTURE ON THE CATALYST 6500
	4. EEM APPLETS
	5. EEM TCL SCRIPTS
	6. TCL SCRIPT EXAMPLE
	7. SUMMARY


