IP Telephony

- en del af mercantec

IPT Protocols Telephony Protocols and VoIP

ascom

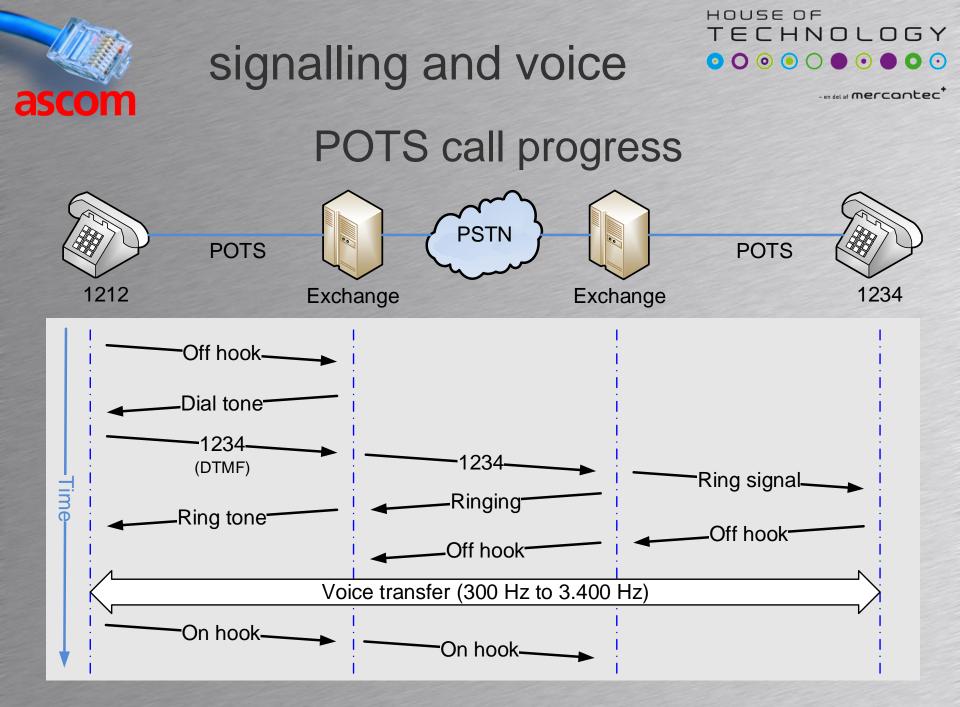
Subjects

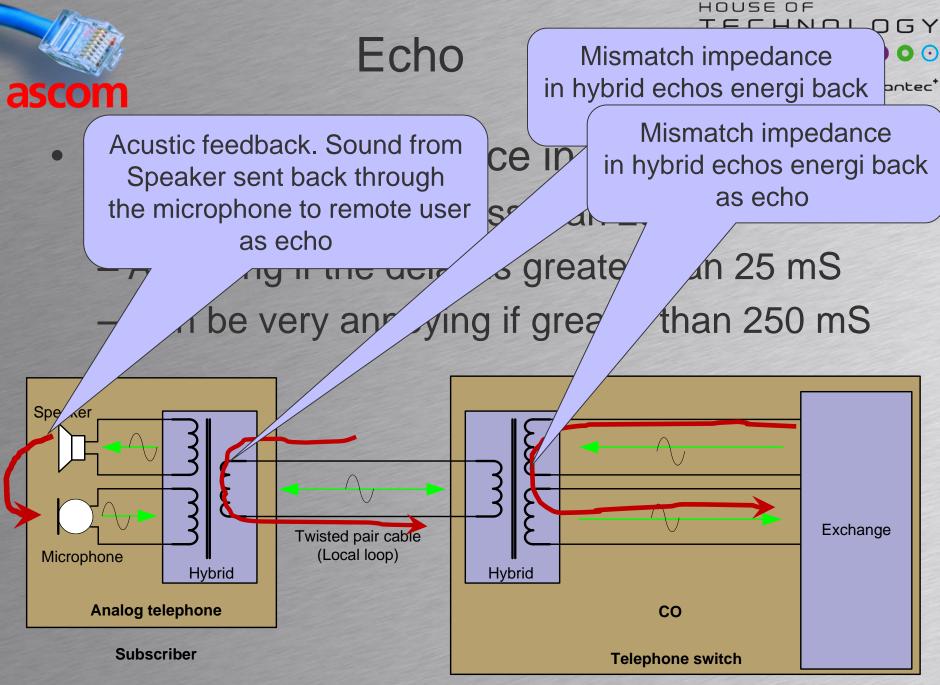
- VoIP signalling standards overview
- IETF SIP signalling including registration
- ITU H.323 protocol suite
- RTP/RTCP and ZRTP/SRTP overview
- The IP Phone soft/hard, DSP, PoE

- en del af mercantec

REVIEW

Generic VolP


ascom


DTMF Dialing

- Telephone sends dual tone when keypad pressed
- Exchange recognizes dual tones and interprets them as digits
- All tones are within the 300 to 3.400 Hz band
 - This is called in-band signalling
 - Voice and signalling carried in the same band

Frequency	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	А
770 Hz	4	5	6	В
852 Hz	7	8	9	С
941 Hz	*	0	#	D

Telephone company

- Circuit switched network (PSTN)
 - A logical connection is made between the two endpoints. (Phones)
 - Bandwidth guaranteed (64 Kbps for voice)
 - Delay constant
- Packet switched network (IP network)
 - A logical connection use TCP/UDP between the two endpoints. (IP Phones)
 - No bandwidth guarantee
 - Delay not constant

MOS Mean Opinion Score

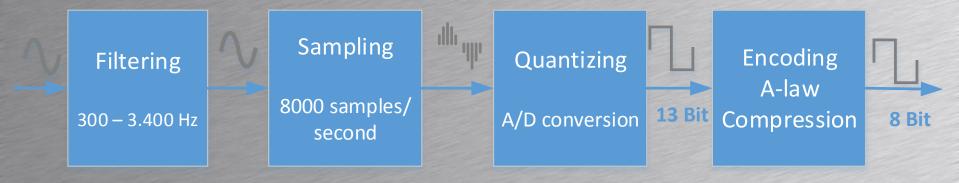
- en del af mercantec

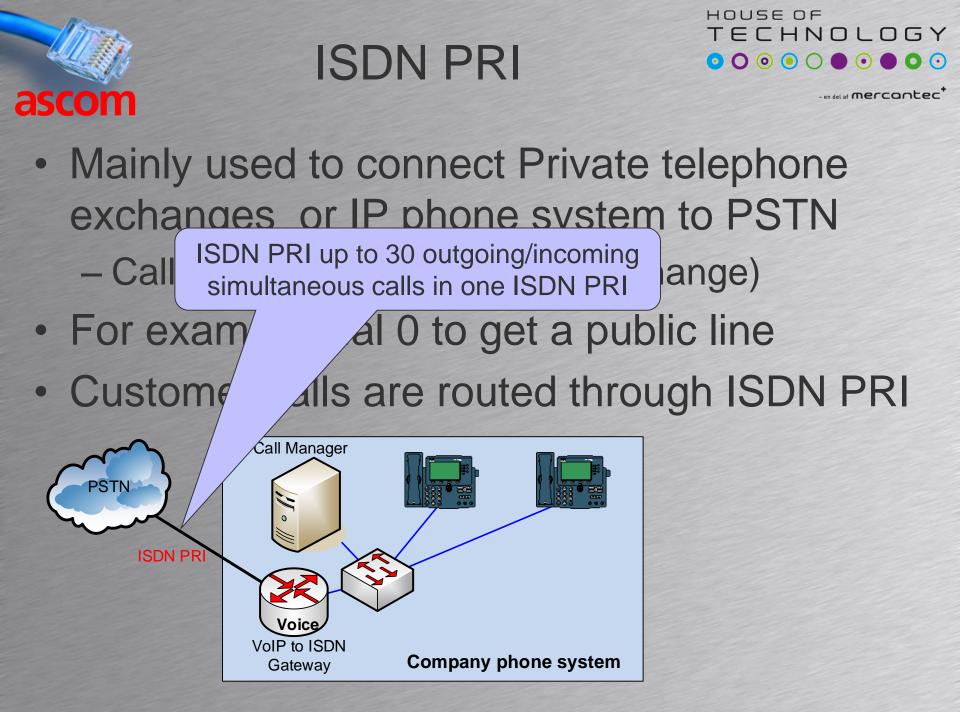
 MOS used to validate the quality of telephone voice quality

MOS	Quality	impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

Codec	From	Bandwidth	Data rate	MOS
G.711	1972	300-3.400 Hz	64 Kbps	4,1
G.722	1988	50-7.000 Hz	64 Kbps	~4,5
G.726	1990	300-3.400 Hz	32 Kbps	3,85
G.729	1996	300-3.400 Hz	8 Kbps	3,92
GSM EFR	1995	300-3.400 Hz	12,2 Kbps	3,8

Codec G.711 A-law




- en del af mercantec

From analog audio signal to coded bit stream

Advanced mathematics used in encoding to preserve voice quality

Stage	Signal	Comment
Filtering	Analog	Input from microphone. High bandwidth
Sampling	Analog filtered	8000 samples of input signal caught pr. Second
Quantizing	Analog samples	Analog to digital conversion. 13 bit precision
Encoding	Compression	8000 compressions second to 8 bit = 64.000 bps

in/out of band signalling

- ISDN signalling
 - signalling carried in the D channel
 - Voice/data carried in B-channel
 - Signal and voice separated in two channels or bands
 - ISDN is an example of out-of-band signalling
- POTS
 - Voice carried in the 300 3.400 Hz band
 - signalling DTMF carried in the same band
 - POTS is an example of in-band-signalling

- en del af mercantec

VoIP signalling standards

VoIP – Voice over IP

VolP signalling standards

HOUSE OF

- A variety of IP based signalling standards to VoIP defined – and used
 - SIP

....

- -H.323
- MGCP
- SIP and H.323 included in this course
- The purpose of VoIP signalling
 - Establish, maintain and close voice calls
 - Eventually collect information for taxation

ascom

signalling standards

- Two kinds of information necessary to phone

 Call control (signalling phone to/from exchange)
 Voice transfer (Between participating phones)
- In traditional telephony
 - Call Control (For example POTS or ISDN)
 - Voice transfer (Circuit switched channel)
- In VoIP Voice over IP
 - Call control (For example SIP or H.323)
 - Voice transfer (Packet switched)

SIP and H.323

- en del af mercantec*

• H.323

E

- International Telecommunication Union
- Uses many technologies from PSTN
- A suite of different protocols incl. voice/video
- SIP Session Initiation Protocol
 - Defined by IETF in 1996

- Defined by ITU in 1996

- Internet Engineering Task Force
- Uses many technologies from the Internet
- Is a signalling protocol for voice/video

- en del af mercantec

SIP SIGNALLING

ascom

Session initiation protocol

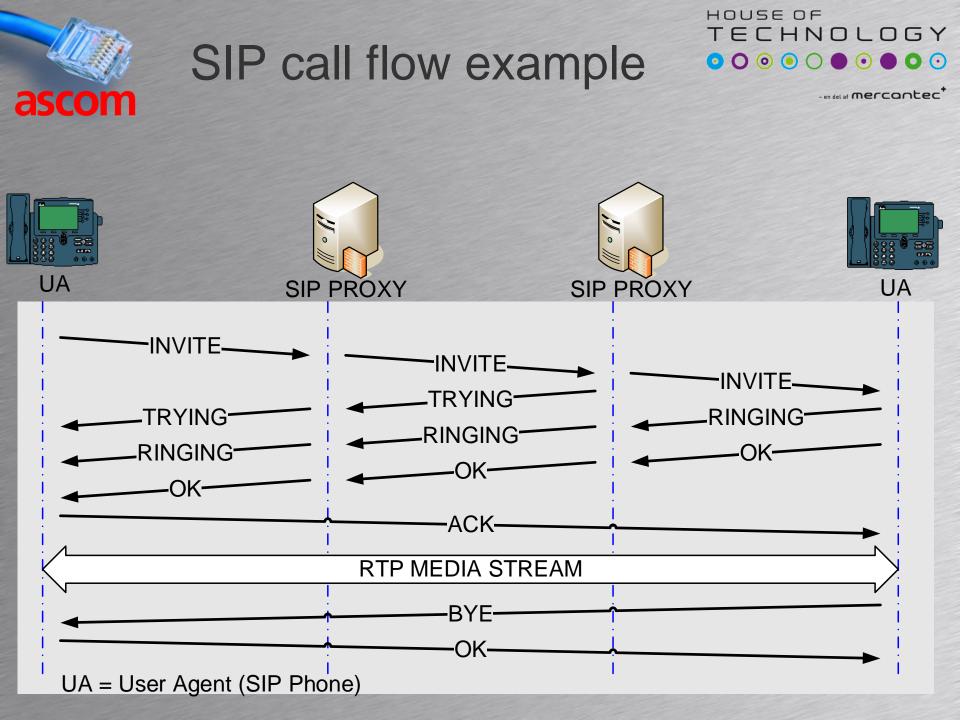
SIP ascom Session Initiation Protocol

Defined by IETF in 1996
 Internet Engineering Task Force

ECHNOLOGY

- en del af mercantec

HOUSE OF


- Uses many technologies from the Internet
- Is a signalling protocol for voice/video
- SIP are widely used as VoIP signalling

SIP Design

- Expandable
 - Easy integration of new facilities
- (Not) a substitute for PSTN
 SIP are used by many service providers
- Diversity of end-devices
 - Intelligent end-devices
- Multimedia
 - Voice, video....

ascom

- en del af mercantec

- Is a application layer protocol
- Is a text based signalling protocol
 Reminding of the HTTP and SMTP protocols
- Are used to establish, maintain and terminate multimedia sessions

SIP

- Support unicast and multicast sessions
- Location independent
 - Suitable for mobile users

SIP components

- There are two SIP components
- User Agents (UA) SIP End-points (IP Phones) consisting of
 - User Agent Client (UAC): Initiates sessions
 - User Agent Server (UAS): Respond sessions
- SIP servers
 - Proxy server Like a SIP IP-PBX
 - Registrar server User Agent register
 - Redirect server Redirect sessions

SIP addressing

- en del af mercantec

- SIP addresses are identified by SIP URI's

 Uniform Resource Identifier
- Example

sip:4103@mercantec.dk;transport=UDP

- sip The URI service
- -4103 The URI user part (extension/phone)
- Mercantec.dk The URI host part
- -;transport=UDP A URI parameter

SIP addressing

- Different formats of URI's
 - FQDN's: sip:heth@mercantec.dk
 - E.164: sip:30539361@mercantec.dk
 - E.164: tel:30539361
 - Mixed: sip:heth@194.123.12.23
- E.164 numbers in DNS

SIP messaging

- Messages contain header describing the communication in details
- Uses a text based syntax and header like HTTP
- Transport protocols TCP, UDP or SCTP
 SCTP: Stream Control Transport Protocol
- Basically there are two kinds of messages
 - Requests: Sent by Clients
 - Response: Sent by servers

SIP messaging

- en del af mercantec

Request message header

Method	Request URI	SIP version
--------	-------------	-------------

- Method: INVITE, ACK, BYE
- Request URI: The receiver of the request
- SIP version: Used SIP version (2.0 in use)
- Response message header

SIP version Status code Reason phrase

- SIP version: Used SIP version (2.0 in use)
- Status code: An integer describing the answer
- Reason Phrase: A text description of status code

SIP requests methods

- en del af mercantec

Command	Function		
INVITE	Used to establish a media session between user agents. Starting a call		
ACK	Confirms reliable message exchanges		
BYE	Terminates a established session between agents		
CANCEL	Terminates a pending request		
OPTIONS	Requests information about the capabilities of a caller, without setting up a call		
REGISTER	Used by a user agent to register to registrar. The user agent informs the registrar of its IP address and URI.		

NOTE: There are defined more SIP request methods than indicated in the above table. The shown methods are from <u>RFC 3261</u>

SIP response codes With examples

ascom

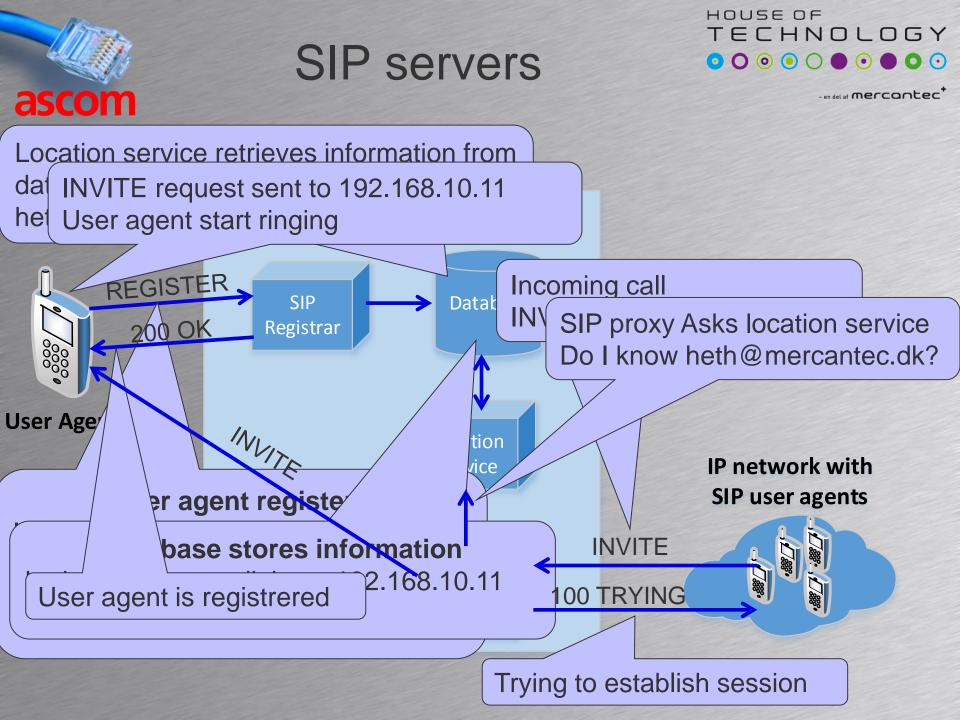
Respons class	Status code	Reason phrase
Info	1xx	Provisional responses
	100	Trying
	180	Ringning
Succes	2xx	Succesful responses
	200	OK
Redirect	3xx	Redirection responses
	302	Moved temporarily
Client error	4xx	Client failure responses
	401	Unauthorized
Server error	5xx	Server failure responses
	503	Service unavailable
Global failure	6xx	Global failure responses
	603	Decline

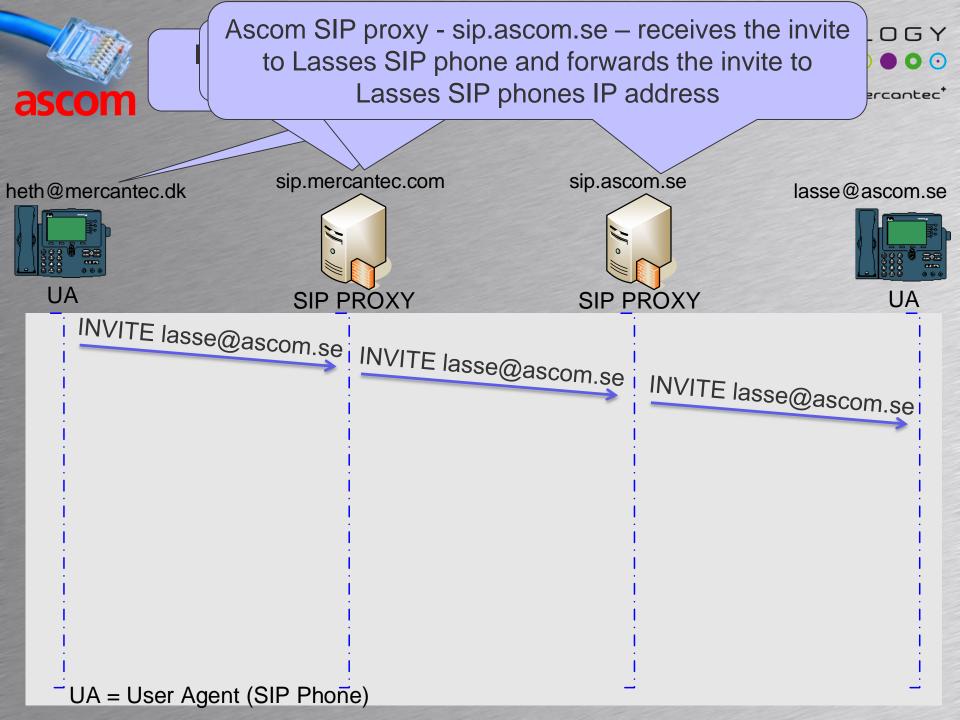
ascom SI

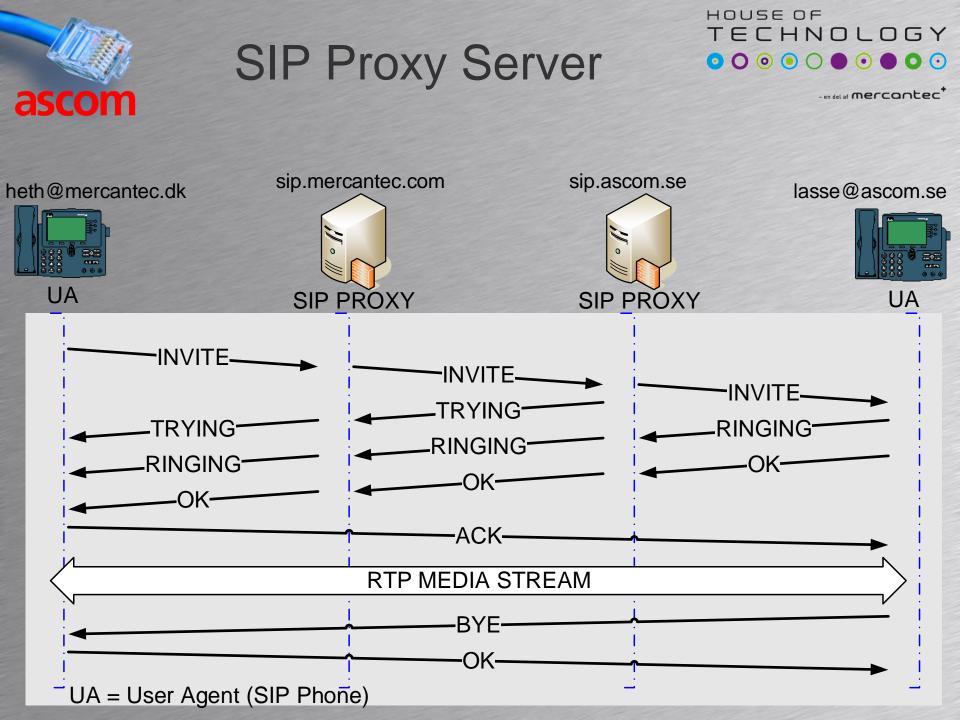
SIP User Agent – UA

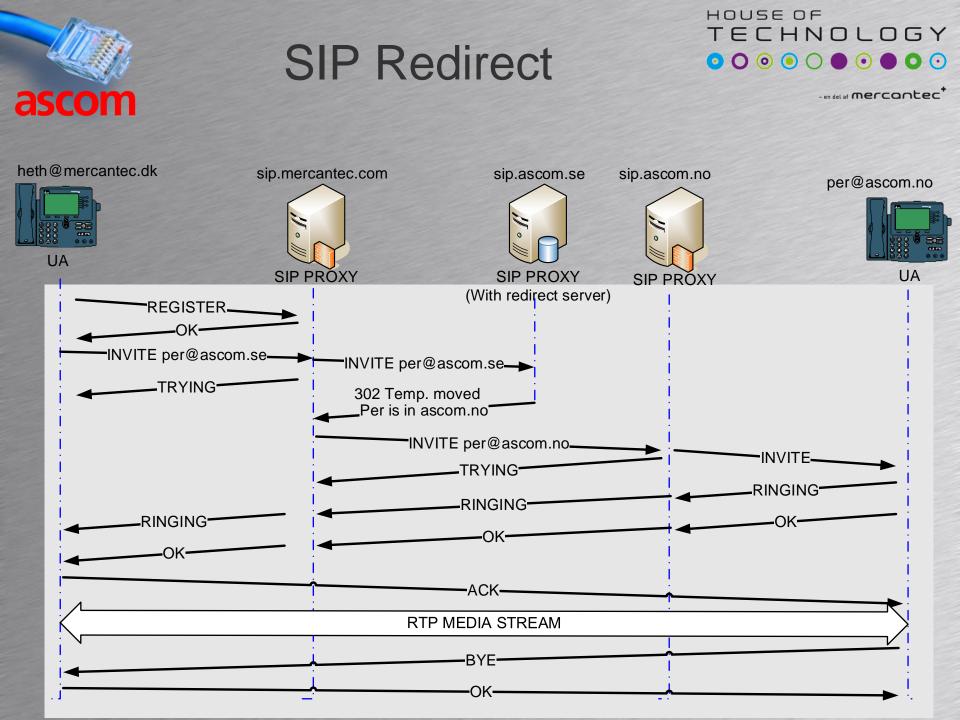
- en del af mercantec

• A User Agent is a software component acting on behalf of a user


- The SIP phone soft or hard is a SIP UA
- User Agent Client UAC
 - Initiates SIP sessions when calling
 - Send SIP requests
- User Agent Server UAS
 - Accepts or rejects SIP session requests
 - Receives SIP requests and return SIP response




SIP servers



- Proxy server
 - Receive and sends SIP request and responses on behalf of the User Agents. (UA)
- Registrar server
 - User Agents register to the registrar server
 - Keeps track on User Agents URI and IP addresses and acts as a location service
- Redirection Server
 - Returns "contact this address" responces
- The servers often live on the same "box"

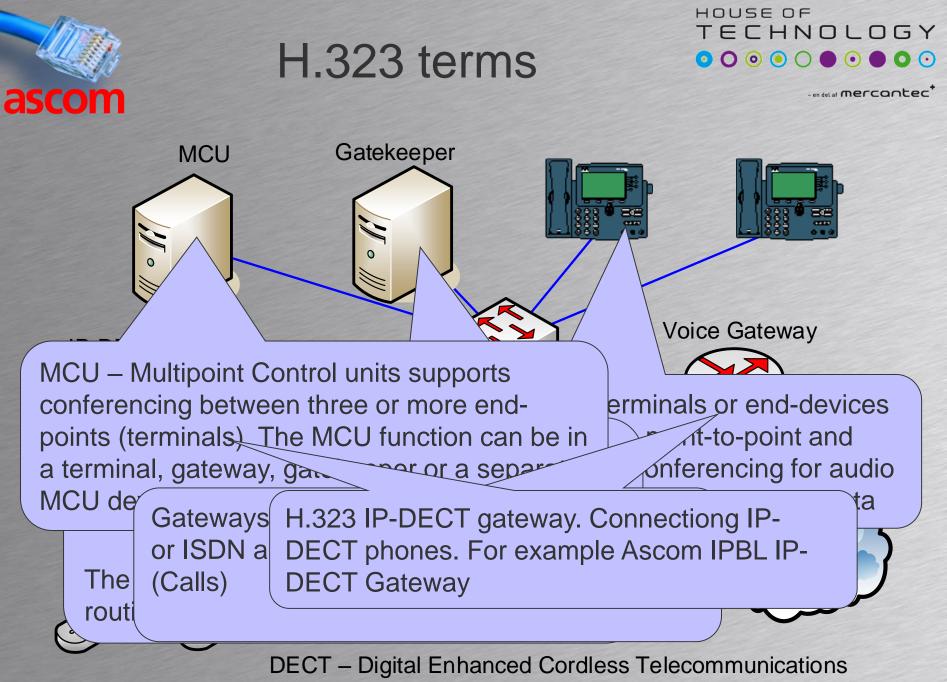
ascom

- en del af mercantec

- Connect FreePBX
- Flash phones
- Create phones and create extensions

Task

Phone Boot?



- en del af mercantec

H.323 SIGNALLING

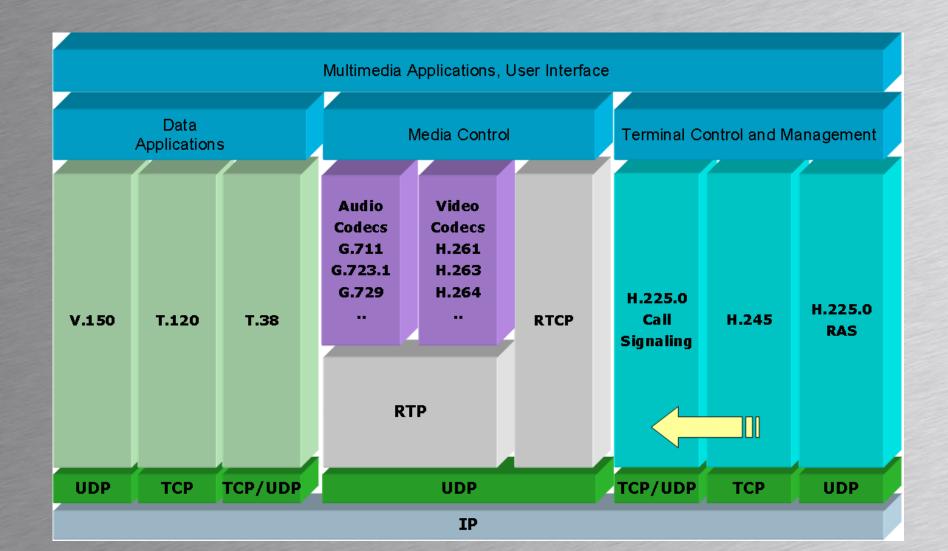
PSTN – Public Switched Telephone Network

H.323 functions and devices

Function	Description
Terminal	Also called end-device. In daily speech called H.323 IP phone
Gatekeeper	Main function is to provide call routing. (Establish call sessions) In daily speech referred to as the gatekeeper or H.323 IP PBX
MCU	Multipoint Control Unit – used with conferencing
Gateway	Connects two dissimilar networks. For example connects a H.323 network with the PSTN or IP-DECT



- en del af mercantec


H.323 is a suite of protocols – Each with its own defined purpose

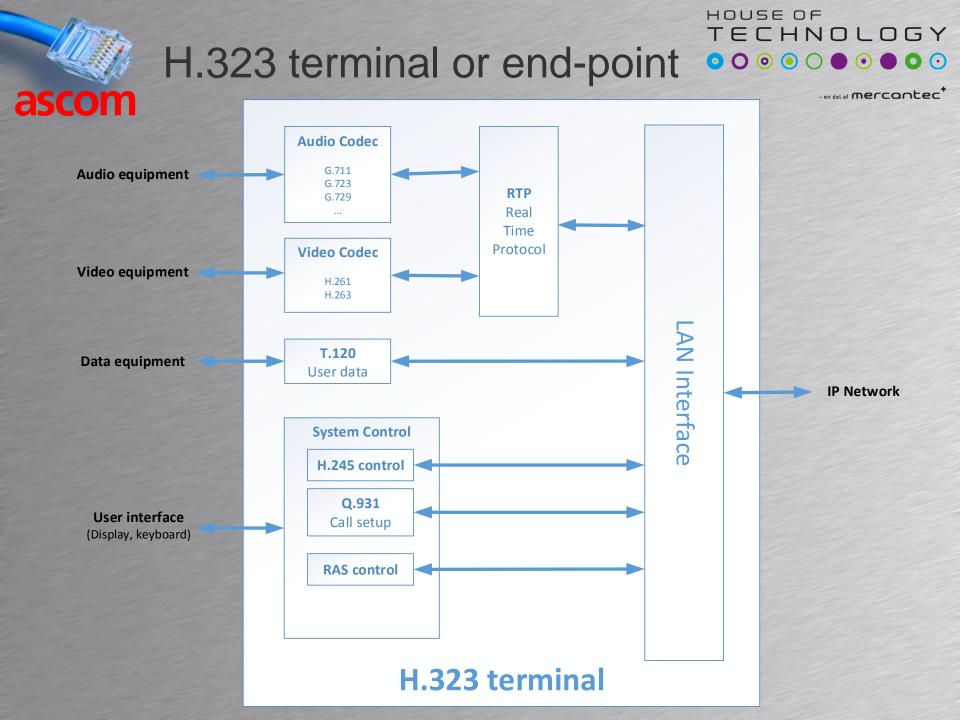
ascom

Protocol	Description
H.225.0	RAS – Registration, Admission and status
H.225.0	Call signalling (Based on ISDN's Q.931 signalling)
H.245	Control protocol for multimedia communication (Non telephone)
RTP	Real Time Transport Protocol – Carries voice/video between end-points
H.235	Security and encryption standard for H.323 devices
H.239	Used for dual-streams for example video conferencing
H.450	Supplementary services (Call transfer, hold, waiting call)
H.460	Extensions to H.323 videoconferencing standard (NAT traversal)

H.225 RAS signalling

- en del af mercantec
- RAS Registration Admission and Status
 - Pre-call control in H.323 networks
- Registration:

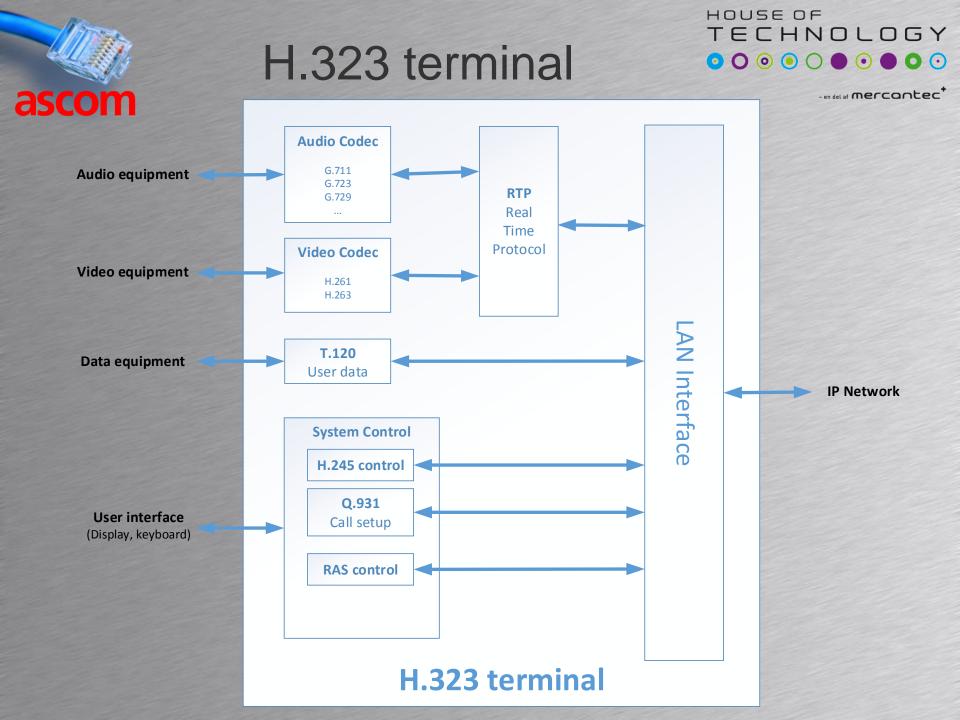
ascom

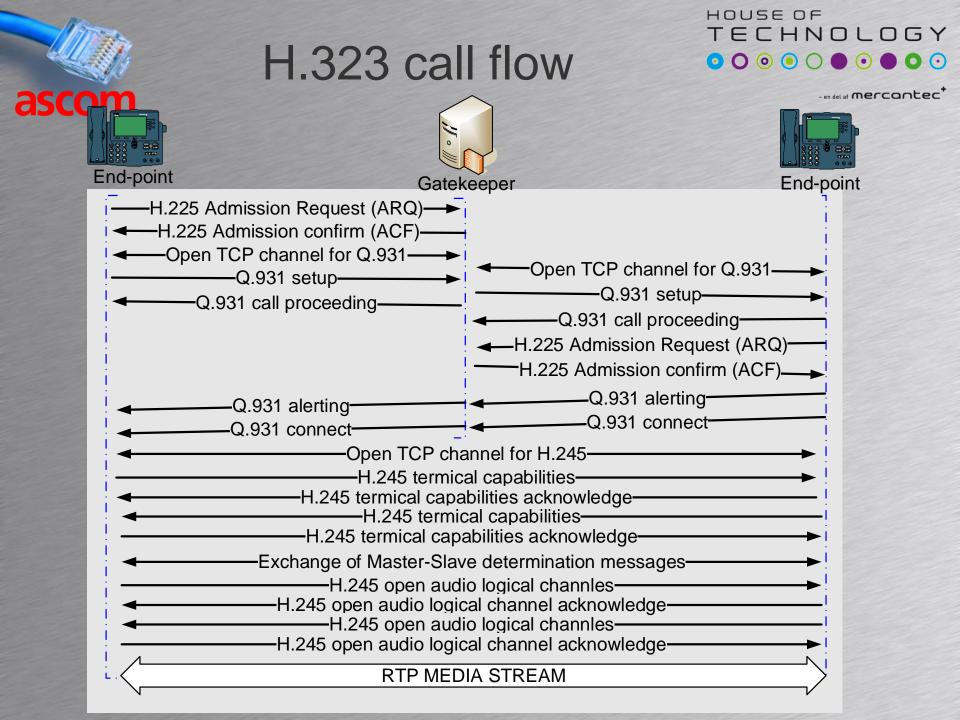

- Enables end-points and gateways to register to a gatekeeper
- Admission:
 - Admission messages between end-points and gatekeepers provide the basis for call control
- Status
 - Gatekeeper can obtain status information from end-points. (Check if on-line)

Gatekeeper discovery H.225 RAS signalling

ascom

- End-points must register to gatekeepers
 - The gatekeeper must know all end-points
- End-points need to know IP address of the gatekeeper or gatekeepers
- Manual or automatic gatekeeper discovery
 - Manual: end-points have manually entered IP address/hostname for gatekeeper
 - Automatic: End-points use IP multicast to discover gatekeepers


H.323 port numbers



- en del af mercantec

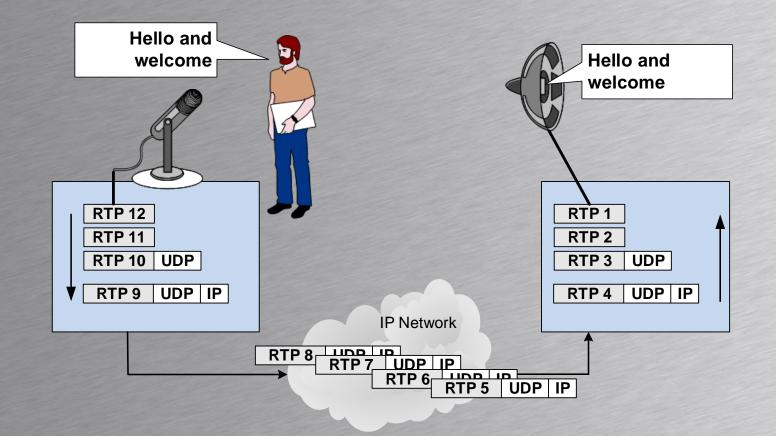
Protocols and port numbers used

Protocol	Port number	Description
H.225.0	UDP/1718	RAS Multicast gatekeeper discovery port (224.0.1.41)
H.225.0	UDP/1719	RAS Gatekeeper Unicast registration and status port
H.225.0	TCP/1720	Call signalling
H.245	TCP Dynamic 1024 – 65535	Control protocol for multimedia communication
RTP	UDP Dynamic 1024 – 65535	Real-time Transport Protocol

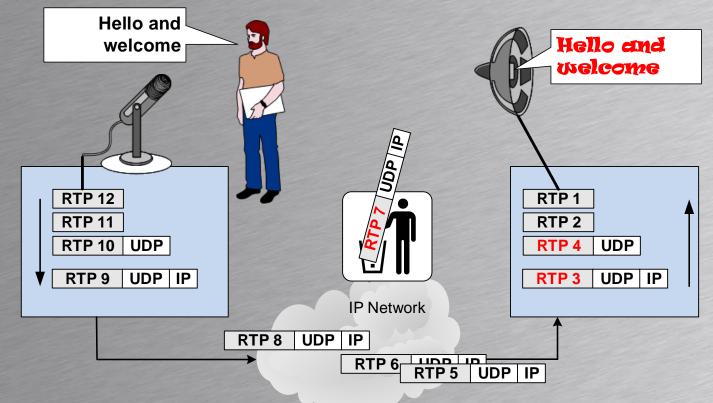
- en del af mercantec

RTP FAMILY

Real-time Transport Protocol



Voice quality


- en del af mercantec

Low constant delay is important for a good voice quality with low delay

- No guaranty of constant delay in packet !
- No guaranty of orderly delivery of packets !
- No guaranty packets are delivered !

- en del af mercantec

 Designed for end-to-end real-time transfer of data

RTP

- High lights
 - Primary standard for audio/video transport
 - Jitter Compensation
 - Variable delay between packets is called Jitter
 - Detection of out of sequence packets
 - Possibility for multicasting
 - Transport via UDP or TCP
 - Secure version available SRTP with encryption

RTP

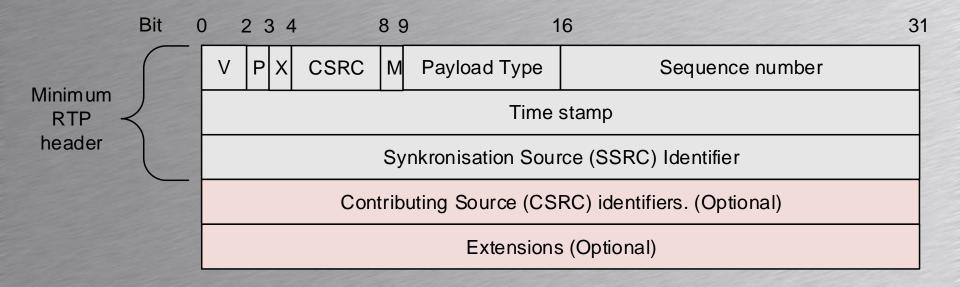
- Real-time multimedia streaming
 - Can tolerate small amounts of lost packets
 - Rule of thumb in VoIP is up to 1% packet loss
 - Receiver uses an error concealment algorithm
 - Receiver uses small jitter-buffer
 - Delays playback a little allowing a little jitter
 - 20 mS often used in VoIP
 - Requires an optional signalling protocol
 - Such as SIP or H.323 to establish a session

- en del af mercantec

Most implementations of RTP uses UDP

RTP

- If data is not present in the "magic" moment the data is useless
- Reliability and timely delivery is the responsibility of the IP network
 - QoS necessary for good voice quality


Ethernet /	IP	UDP	RTP	Payload
frame	header	header	header	(Voice,video)
header	20 bytes	8 bytes	12 bytes	20 -160 bytes

RTP header

- The RTP header consist minimum of 12
 bytes
 - 32 bits or 4 bytes in each line

RTP header

- en del af mercantec

Field	Bits					
V	2	Version. Current standard 2				
Ρ	1	Padding – Indicating extra fill bytes to fill up a block to a certain size				
Х	1	Optional eXtension header present				
CSRC	4	Optional CSRC present count (1 to 15)				
М	1	Marker – Indicating this packet has special meaning. For example can be used to synchronize clock rates between peers				
	Bit	0 2 3 4 8 9 16 31				
Minim um RTP header		V P X CSRC M Payload Type Sequence number				
		Time stamp				
		Syncronisation Source (SSRC) Identifier				

Contributing Source (CSRC) identifiers. (Optional)

Extension header (Optional)

RTP header

Field	Bits					
Payload type	7	Which ki	Which kind of data carried – Codec			
Sequence nr.	16		Incremented in each packet. Used by the receiver to detect packet loss and restore packet order			
Time stamp	32	Used by	the receiver to	start playback at appropriate time		
SSRC	32	Uniquely	Uniquely identifies the source of a particular stream			
CSRC	´n X 32	•	Optional field identifying if more contributing sources (For example a voice conference)			
Bit	0 2 3 4	8 9	1	6 31		
	VPX	CSRC M	Payload Type	Sequence number		
Minimum RTP	Time stamp					
header		Syncronisation Source (SSRC) Identifier				
	Contributing Source (CSRC) identifiers. (Optional)					
	Extension header (Optional)					

- G.711 a-Law codec used
- RTP time interval 20 mS = 0,02 second
- a-Law bit rate = 64.000 bps = 8.000 Bps
- RTP payload data pr. Packet
 8000 bytes/second * 0,02 second = 160 bytes
- Packet size: 20 + 8 + 12 + 160 = 200 Bytes
 - Without OSI layer 2 overhead (ethernet frame)

IP	UDP	RTP	Payload a-Law
header	header	header	
20 bytes	8 bytes	12 bytes	160 bytes

HOUSE OF ECHNOLOGY en del af mercantec ascom 0,02 second between packets -1/0,02 = 50 packets pr. Second Each packets is 200 bytes - 50 packets * 200 byte * 8 = 80.000 bps VoIP streams can be bidirectional – Network load = 2 * 80.000 bps = 160.000 bps

IP	UDP	RTP	Payload a-Law
header	header	header	
20 bytes	8 bytes	12 bytes	160 bytes

Silence suppression

- Voice conversations are often half duplex
 One listen while the other talks
- No reason for sending RTP packets with background noise only
 - Silence suppression stops RTP transmission
 - Silence suppression is an option
 - Receiving phone makes comfort noise
 - Speaker has a feeling of the connection
- Saves bandwidth important in trunks

RTP family

- en del af mercantec

RTP family of protocols

Protoc ol	Description
RTP	End-to-end transfer of real-time stream data (Unencrypted)
RTCP	Provides statistics and control information for an RTP media stream
SRTP	End-to-end transfer of real-time stream data (Encrypted)
ZRTP	Cryptographic key-exchange protocol between VoIP end-points

Protocol	Name	Date standardized
RTP	Real-time Transport Protocol	1998
RTCP	Real-time Transport Control Protocol	1998
SRTP	Secure Real-time Transport Protocol	2004
ZRTP	Zimmerman Real-time Transport Protocol	2006

ACCOM Real-time Transport Control Protocol

- en del af mercantec

Related to RTP

- Provides statistics and control information for an RTP media stream
- Sender report SR
 - The RTP sender periodically sends SR reports including the sent and received RTP packets
- Receiver report RR

 Send by receive-only participants. Those who do not transmit RTP packets.

SRTP

ascom Secure Real-time Transport Protocol

- A version of RTP providing security
- Encryption
 - Only the intended receiver can read the data
- Authentication
 - Identity check of other party
- Integrity
 - Data cant be changed in transit
- Anti replay
 - Data cant be recorded and retransmitted

SRTP Secure Real-time Transport Protocol

- Uses standard security features
 - Defaults to AES for encryption
 - HMAC-SHA1 for authentication and integrity
- The security standards are out of scope in this course module
- A new version of RTCP providing security
 SRTCP Secure Real-time Control Protocol

ZRTP

HOUSE OF

0

 $\bigcirc \bigcirc \bigcirc$

THNOLOGY

- en del af mercantec

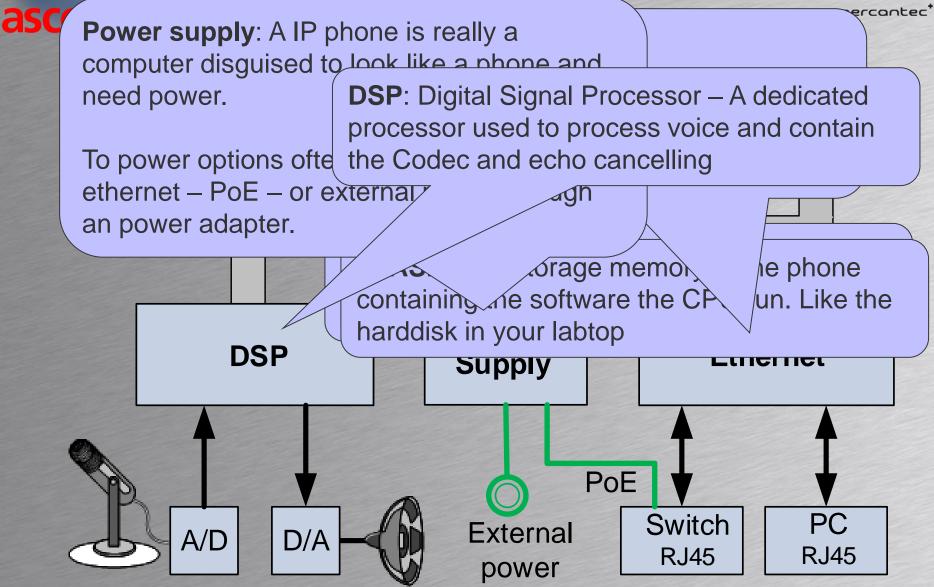
ascom Zimmermann Real-time Transport Protocol

- Cryptographic key-agreement protocol
- Can be used without a PKI or certificates
 Public Key Infrastructure
- Uses RTP as transport channel
- signalling protocol unaware of ZRTP
- Negotiate keys between end-points
 Uses Diffie-Hellman key exchange

- en del af mercantec

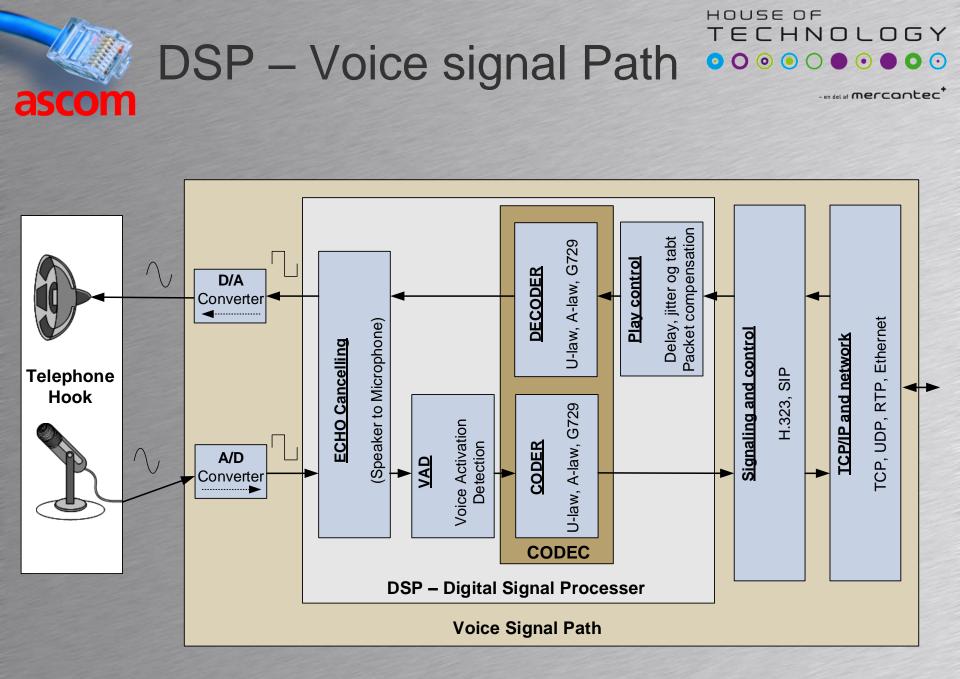
THE IP PHONE

Hard and soft phones


IP phones

- Soft, hard, wired and wireless
- Standardized signalling protocols

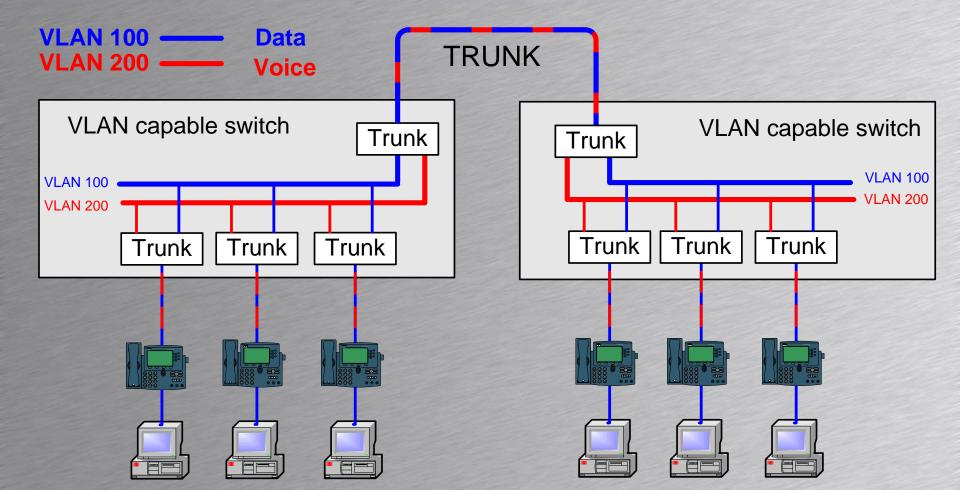
 For example H.323 and SIP
- Vendors add on functionality
 Not 100% comparability between vendors
- Configuration of IP phones
 - Manually
 - Automatically Vendor specific configuration


Hard phone parts

DSP Digital Signal Processor

- en del af mercantec
- A DSP is a microprocessor designed to process analog signal such as voice and video
- The analog signal has to be converted to digital by a A/D converter. (Analog to Digital converter)
- The DSP offload the CPU for working with the signal processing.
- A normal CPU can be used for signal processing
 - CPU's are not optimized for signal processing
 - All running programs share the same CPU. (Jitter)
- CPU's in PC's use Intels MMX instruction set
 - Special instructions for multimedia processing
- A dedicated DSP guaranties processing

Voice VLAN



- en del af mercantec

- Data traffic carried in VLAN 100

ascom

- Voice traffic carried in VLAN 200

PoE Power over Ethernet

- en del af mercantec
- Most IP phones are powered by 48 Vdc
- Many IP phones can get power from
 - External power supply connected to mains
 - From switches capable of delivering power
 - PoE or Power over Ethernet
 - Picture below is a partial printout from a PoE capable switch

🛃 mars.tekkom.d	k - PuTTY		100	10000		
Campus1#s Available	_	er inline w) Used:44	.1(w) R	emaining:235.9(w)		
Interfade	Admin	Oper	Power (Watts)	Device	Class	Max
 Fa0/1	auto		6.3	IP Pnone 7940	2	15.4
Fa0/1 Fa0/2	auto	on on	6.3	IP Phone 7940 IP Phone 7940	2	15.4
Fa0/3	auto	off	0.0	IF FIGHE /940	-	15.4

PoE Power over Ethernet

- Two standards
 - 802.3af supplying device with up to 12,95 Watt
 - 802.3at supplying device with up to 25,50 Watt
- Can be used with 10,100 and 1000 Mbps ethernet
- Some vendors invented their own version of PoE before IEEE standards
 – IEEE 802.3af from 2003
 - IEEE 802.3at from 2009 also called PoE plus

asc	ascom			oE er Etherne	000	
Pin RJ45	T568A RJ45	Pair	10/100 Spare Mode B	10/100 mixed Mode A	1000 Mbps Mode B	1000 Mbps Mode A
1	0)	3	Rx+	RX+ DC+	TxRx A+	TxRx A+ DC+
2		3	Rx-	RX- DC+	TxRx A-	TxRx A- DC+
3	0)	2	Tx+	TX+ DC-	TxRx B+	TxRx B+ DC-
4	0)	1	DC+	Unused	TxRx C+ DC+	TxRx C+
5	0)	1	DC+	Unused	TxRx C- DC+	TxRx C-
6	0)	2	Tx-	TX- DC-	TxRx B-	TxRx B- DC-
7	0)	4	DC-	Unused	TxRx D+ DC-	TxRx D+
8	0)	4	DC-	Unused	TxRx D- DC-	TxRx D-

Abbr.	Explanation
Rx+, Rx-	Receive plus and minus signal (Differential on pair)
Tx+, Tx-	Transmit plus and minus signal (Differential on pair)
DC+, DC-	PoE DC delivered common mode in pair. Plus or minus in pair.

- en del af mercantec

WIRESHARK

Packet analyzer

- Capture SIP conversations
- Create a visual document explaining the packet and the flow in a conversation.