

Router Security Issues

- The Role of Routers in Network Security:
 - Router security is a critical element in any security deployment and are definite targets for network attackers.
 - Roles:
 - Advertise networks and filter who can use them.
 - Provide access to network segments and subnetworks.

CCNA4-3 Chapter 4-

Router Security Issues

- Routers Are Targets:
 - Compromising the access control can expose network configuration details, thereby facilitating attacks against other network components.
 - Compromising the route tables can reduce performance, deny network communication services, and expose sensitive data.
 - Misconfiguring a router traffic filter can expose internal network components to scans and attacks, making it easier for attackers to avoid detection.

CCNA4-4 Chapter 4-2

Router Security Issues

• Securing routers at the network perimeter is an important first step in securing the network.

CNA4-5 Chapter 4-:

Router Security Issues

- Securing Your Network:
 - Physical:
 - Locate the router in a locked room that is
 accessible only to authorized personnel.
 - UPS.
 - Update the router IOS:
 - Note that the latest version of an operating system may not be the most stable version available.
 - Use the latest, stable release that meets the feature requirements of your network.

Chapter 4-2

NA4-6

Router Security Issues

- Securing Your Network:
 - Configuration and IOS:
 - Keep a secure copy of the router IOS and router configuration file on a TFTP server for backup purposes.

S01/0 209.165.200.225/27 S0/0/1 209.165.200.226/27 ISP

- Unused Services:
 - A router has many services enabled by default.
 - Harden your router configuration by disabling unnecessary services and unused ports.

NA4-7 Chapter 4-2

Applying Cisco IOS Security Features

• Steps to safeguard a router:

Steps to safeguard a router:

- Step 1. Manage router security
- Step 2. Secure remote administrative access to routers
- Step 3. Logging router activity
- Step 4. Secure vulnerable router services and interfaces
- Step 5. Secure routing protocols
- Step 6. Control and filter network traffic

CCNA4-8

Chapter 4-2

- Step 1: Manage Router Security.
 - Basic router security consists of configuring passwords.
 - A strong password is the most fundamental element in controlling secure access to a router.
 - Follow accepted password practices.
 - Don't write it down.
 - Avoid dictionary words.
 - Combine letters, numbers and symbols.
 - Make password lengthy.
 - Change passwords frequently.

The command **no password** on vty lines prevents any login.

IA4-9 Chapter 4

Steps to Safeguard a Router

- Step 1: Manage Router Security.
 - By default, Cisco IOS software leaves passwords in plain text when they are entered on a router.

service password-encryption

```
enable secret 2ManY-routEs 
security passwords min-length 10
```

CCNA4-10 Chapter 4-2

- Step 2: Secure Remote Administrative Access.
 - Local access through the console port is the preferred way for an administrator to connect to a device to manage it because it is secure.
 - Remote administrative access is more convenient than local access.
 - Using Telnet can be very insecure because all network traffic is in plain text.
 - An attacker could capture network traffic and sniff the administrator passwords or router configuration.

CCNA4-11 Chapter 4-2

Steps to Safeguard a Router

- Step 2: Secure Remote Administrative Access.
 - Remote access typically involves allowing Telnet, Secure Shell (SSH), HTTP, HTTP Secure (HTTPS), or SNMP connections to the router from a computer.
 - Establish a dedicated management network.
 - Secure the administrative lines.
 - Encrypt all traffic between the administrator computer and the router.

CCNA4-12 Chapter 4-2

- Step 2: Secure Remote Administrative Access.
 - Logins may be prevented on any line by configuring the router with the login and no password commands.
 - VTY lines should be configured to accept connections only with the protocols actually needed.

transport input telnet - only telnet transport input telnet ssh - telnet or ssh

- Implement Access Control Lists (ACLs) Chapter 5.
- Configure VTY timeouts using the **exec-timeout** command.

CCNA4-13 Chapter 4-2

Steps to Safeguard a Router • Step 2: Secure Remote Administrative Access. SSH Uses TCP Port 22 Secure Tunnel with encrypted communications. Administrative Host Client Client Client Client Client

Configuring SSH Security

- To enable SSH, the following parameters must be configured:
 - Hostname
 - Domain Name
 - Asymmetrical Keys
 - Local Authentication

CCNA4-15

Chapter 4-2

Configuring SSH Security

 To enable SSH, the following parameters must be configured:

```
Router(config)#hostname R2
R2 (config) #
R2(config) #ip domain-name scccs.ca
R2(config) #crypto key generate rsa
The name for the keys will be: R2.scccs.ca
Choose the size of the key modulus in the range of 360 to 2048
for your General Purpose Keys. Choosing a key modulus greater
  than 512 may take a few minutes.
How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]
R2 (config) #username student password cisco
*Mar 1 0:2:35.187: %SSH-5-ENABLED: SSH 1.99 has been enabled
R2 (config) #line vty 0 4
R2 (config-line) #transport input ssh
R2 (config-line) #login local
R2 (config-line) #exit
R2 (config) #ip ssh time-out 15
R2(config) #ip ssh authentication-retries 2
R2 (config) #
                                                                          Chapter 4-2
```

CCNA4-16

Configuring SSH Security

- To enable SSH, the following parameters must be configured:
 - Step 1: Hostname:

```
Router(config) #hostname R2
R2 (config) #
```

- Step 2: Domain Name:
 - Required for SSH.

```
R2 (config) #ip domain-name scccs.ca
```

CCNA4-17

Chapter 4-2

Configuring SSH Security

- To enable SSH, the following parameters must be configured:
 - Step 3: Generate the RSA key:
 - This step creates an asymmetrical key that router uses to encrypt the SSH management traffic.

```
R2 (config) #crypto key generate rsa

The name for the keys will be: R2.sccs.ca

Choose the size of the key modulus in the range of 360 to 2048

for your General Purpose Keys. Choosing a key modulus greater

than 512 may take a few minutes.

How many bits in the modulus [512]: 1024

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]
```

Cisco recommends a modulus length of 1024. A longer length generates a more secure key but adds some latency.

CCNA4-18 Chapter 4

- To enable SSH, the following parameters must be configured:
 - Step 4: Configure local authentication and vty:
 - You must define a local user.

```
R2 (config) #username student password cisco
*Mar 1 0:2:35.187: %SSH-5-ENABLED: SSH 1.99 has been enabled
```

• Use the **login local** command to search the local database and assign ssh to the vty lines.

```
R2 (config) #line vty 0 4
R2 (config-line) #transport input ssh
R2 (config-line) #login local
```

Makes SSH the only method.
NO TELNET

CCNA4-19

Chapter 4-2

Configuring SSH Security

- To enable SSH, the following parameters must be configured:
 - Step 5: Configure SSH timeouts:
 - Not absolutely necessary for SSH but probably a good idea.

```
R2 (config) #ip ssh time-out 15
R2 (config) #ip ssh authentication-retries 2
R2 (config) #
```

CCNA4-20

Chapter 4-2

- Step 4: Securing Router Network Services.
 - Cisco routers support a large number of network services at layers 2, 3, 4, and 7.
 - Some of them are application layer protocols.
 - Others are automatic processes and settings intended to support legacy configurations that pose security risks.
 - Some of these services can be restricted or disabled to improve security without degrading the operational use of the router.
 - Most of the services listed in this section are usually not required.

CNA4-23 Chapter 4-2

Steps to Safeguard a Router

Feature	Description	Default	Recommendation
Cisco Discovery Protocol (CDP)	Proprietary Layer 2 protocol between Cisco devices.	Enabled	CDP is almost never needed; disable it.
TCP small servers	Standard TCP network services: echo, chargen, and so on.	>=11.3: disabled 11.2: enabled	This is a legacy feature; disable it explicitly.
UDP small servers	Standard UDP network services: echo, discard, and so on.	>=11.3: disabled 11.2: enabled	This is a legacy feature; disable it explicitly.
Finger	UNIX user lookup service, allows remote listing of users.	Enabled	Unauthorized persons do not need to know this; disable it.
HTTP server	Some Cisco IOS devices offer web-based configuration.	Varies by device	If not in use, explicitly disable; otherwise, restrict access.
BOOTP server	Service to allow other routers to boot from this one.	Enabled	This is rarely needed and may open a security hole; disable it.
Configuration auto- loading	Router will attempt to load its configuration via TFTP.	Disabled	This is rarely used; disable it if it is not in use.
IP source routing	IP feature that allows packets to specify their own routes.	Enabled	This rarely-used feature can be helpful in attacks; disable it.
Proxy ARP	Router will act as a proxy for Layer 2 address resolution.	Enabled	Disable this service unless the router is serving as a LAN bridge.

CCNA4-24 Chapter 4-2

Feature	Description	Default	Recommendation
IP directed broadcast	Packets can identify a target LAN for broadcasts.	>=11.3; enabled	Directed broadcast can be used for attacks; disable it.
Classless routing behavior	Router will forward packets with no concrete route.	Enabled	Certain attacks can benefit from this; disable it unless your net requires it.
IP unreachable notifications	Router will explicitly notify senders of incorrect IP addresses.	Enabled	Can aid network mapping; disabled on interfaces to untrusted networks.
IP mask reply	Router will send an IP address mask of the interface in response to an ICMP mask request	Disabled	Can aid IP address mapping; explicitly disable on interfaces to untrusted networks.
IP redirects	Router will send an ICMP redirect message in response to certain routed IP packets.	Enabled	Can aid network mapping; disable on interfaces to untrusted networks.
NTP service	Router can act as a time server for other devices and hosts.	Enabled (if NTP is configured)	If not in use, explicitly disable; otherwise, restrict access.
Simple Network Management Protocol	Routers can support SNMP remote query and configuration.	Enabled	If not in use, explicitly disable; otherwise, restrict access.
Domain Name Service	Routers can perform DNS name resolution.	Enabled (broadcast)	Set the DNS server address explicitly, or disable DNS.

Steps to Safeguard a Router

- Step 4: Securing Router Network Services.
 - Turning off a service on the router itself does not mean that the service or protocol cannot be used on the network.
 - For example:
 - TFTP (Trivial File Transfer Protocol)
 - DHCP (Dynamic Host Configuration Protocol)
 - Turning off an automatic network feature usually prevents a certain type of network traffic.
 - For example:
 - IP Source Routing is rarely used but can be used in network attacks.

CCNA4-26 Chapter 4-2

- Step 4: Securing Router Network Services.
 - SNMP, NTP and DNS Vulnerabilities:
 - SNMP (Simple Network Management Protocol):
 - SNMP is the standard Internet protocol for automated remote monitoring and administration.
 - Versions of SNMP prior to Version 3 shuttle information in clear text.

CCNA4-27 Chapter 4-2

Steps to Safeguard a Router

- Step 4: Securing Router Network Services.
 - SNMP, NTP and DNS Vulnerabilities:
 - NTP (Network Time Protocol):
 - Cisco routers and other hosts use NTP to keep their time-of-day clocks accurate.
 - Network administrators should configure all routers as part of an NTP hierarchy.
 - One router is the master timer and provides its time to other routers on the network.
 - If an NTP hierarchy is not available on the network, you should disable NTP.

CCNA4-28 Chapter 4-2

- Step 4: Securing Router Network Services.
 - SNMP, NTP and DNS Vulnerabilities:
 - DNS (Domain Name System):
 - Cisco IOS software supports looking up hostnames with the Domain Name System (DNS).
 - The basic DNS protocol offers no authentication or integrity assurance. By default, name queries are sent to the broadcast address 255.255.255.
 - Either explicitly set the name server addresses
 using the global configuration command ip name server addresses or turn off DNS name
 resolution with the no ip domain-lookup
 command.

CCNA4-29 Chapter 4-

Steps to Safeguard a Router

- Step 5: Securing Routing Protocols.
 - Routing systems can be attacked in 2 ways:
 - Disruption of peers:
 - It is the less critical of the two attacks because routing protocols heal themselves.
 - Falsification of routing information:
 - Falsified routing information may generally be used to cause systems to misinform (lie to) each other, cause a DoS, or cause traffic to follow a path it would not normally follow.

CCNA4-30 Chapter 4-2

- Step 5: Securing Routing Protocols.
 - RIPv2, EIGRP, OSPF, IS-IS, and BGP all support various forms of MD5 authentication.
 - For Example:
 - Prevent RIP updates from being propagated out ports where there is no other router.
 - passive interface command.
 - Prevent unauthorized reception of RIP updates by implementing MD5 authentication with a specific key.
 - Verify RIP routing.
 - While the commands are different, the same basic process is used for other protocols.

NA4-33 Chapter 4-2

Steps to Safeguard a Router

- Locking Down Your Router With Cisco Auto Secure:
 - Cisco AutoSecure uses a single command to disable non-essential system processes and services.
 - Configure it in privileged EXEC mode using the auto secure command in one of these two modes:
 - Interactive mode:
 - This mode prompts you with options to enable and disable services and other security features. (default)
 - Non-interactive mode:
 - Automatically executes the auto secure command with the recommended Cisco default settings.

CCNA4-34 Chapter 4-2

Using Cisco SDM

- Cisco SDM Overview:
 - The Cisco Security Device Manager (SDM) is a webbased device management tool designed for configuring LAN, WAN, and security features on Cisco IOS softwarebased routers.
 - It provides:
 - Easy-to-use smart wizards.
 - Automates router security management.
 - Assists through comprehensive online help.

CCNA4-36

Using Cisco SDM

Cisco SDM Overview:

- Cisco SDM ships preinstalled by default on all new Cisco integrated services routers.
 - If it is not preinstalled, you will have to install it.
 - If SDM is pre-installed, Cisco recommends using Cisco SDM to perform the initial configuration
- SDM files can be installed on router, PC, or both.
 - An advantage of installing SDM on the PC is that it saves router memory, and allows you to use SDM to manage other routers on the network.

CCNA4-37 Chapter 4-2

Using Cisco SDM

- Configuring Your Router to Support SDM:
 - Before you can install SDM on an operational router, you
 must ensure that a few configuration settings are present
 in the router configuration file.
 - Access the router's Cisco CLI interface using Telnet or the console connection.
 - Enable the HTTP and HTTPS servers on the router
 - Create a user account defined with privilege level 15.
 - Configure SSH and Telnet for local login and privilege level 15.

CCNA4-38 Chapter 4-2

Using Cisco SDM

- Starting SDM:
 - To launch the Cisco SDM use the HTTPS protocol and put the IP address of the router into the browser.
 - When the username and password dialog box appears, enter a username and password for the privileged (privilege level 15) account on the router.
 - After the launch page appears a signed Cisco SDM Java applet appears which must remain open while Cisco SDM is running.
 - Because it is a signed Cisco SDM Java applet you may be prompted to accept a certificate.

CCNA4-40 Chapter 4-2

Maintaining Cisco IOS Software Images

- There are certain guidelines that you must follow when changing the Cisco IOS software on a router.
 - Updates:
 - A free update replaces one release with another without upgrading the feature set. (Bug fixes)
 - Upgrades:
 - An upgrade replaces a release with one that has an upgraded feature set or new technologies.
 - Upgrades are not free.

CCNA4-45 Chapter 4-2

Maintaining Cisco IOS Software Images

- It is not always a good idea to upgrade to the latest version of IOS software.
 - Many times that release is not stable.
 - It may include new features or technologies that are not needed in your enterprise.

CCNA4-46 Chapter 4-2

Maintaining Cisco IOS Software Images

- Cisco recommends a four-phase migration process.
 - Plan:
 - Set goals, identify resources, profile network hardware and software, and create a schedule for migrating to new releases.
 - Design:
 - Choose new Cisco IOS releases.
 - Implement:
 - Schedule and execute the migration.
 - Operate:
 - Monitor the migration progress and make backup copies of images that are running on your network.

CCNA4-47

Chanter 4-2

Maintaining Cisco IOS Software Images

- There are a number of tools available on Cisco.com to aid in migrating Cisco IOS software.
 - Some tools do not require a Cisco.com login:
 - Cisco IOS Reference Guide.
 - Cisco IOS software technical documents.
 - Cisco Feature Navigator.
 - Some tools require valid Cisco.com login accounts:
 - Download Software.
 - Bug Toolkit.
 - Software Advisor.
 - Cisco IOS Upgrade Planner.

http://www.cisco.com/en/US/support/tsd_most_requested_tools.html

CCNA4-48

Chapter 4-2

Managing Cisco IOS Images

- Cisco IOS File Systems and Devices:
 - Cisco IOS devices provide a feature called the Cisco IOS Integrated File System (IFS).
 - The directories available depend on the platform.
 - The show file systems command lists all file systems.
 - It provides information such as the amount of available and free memory, type of file system and its permissions.
 - Permissions include read only (ro), write only (wo), and read and write (rw).

CCNA4-49 Chapter 4-2

Managing Cisco IOS Images

- URL Prefixes for Cisco Devices:
 - The copy command is used to move files from one device to another, such as RAM, NVRAM, or a TFTP server.

Chapter 4-2

Managing Cisco IOS Images

• URL Prefixes for Cisco Devices:

CCNA4-55

 The copy command is used to move files from one device to another, such as RAM, NVRAM, or a TFTP server.

```
R2#copy run start
R2#copy system:running-config nvram:startup-config
R2#copy run tftp:
R2#copy system:running-config tftp:
R2#copy tftp: start
R2#copy tftp: nvram:startup-config
```

Managing Cisco IOS Images • Cisco IOS File Naming Conventions: • The IOS image file is based on a special naming convention that contains multiple parts, each with a specific meaning. c1841-ipbase-mz.123-14.T7.bin Feature set - IP Base Version number - 12.3(14)T7 File extension - binary executable CCNA4-57 Chapter 4-2

TFTP Managed Cisco IOS Images

 Before changing a Cisco IOS image on the router, you need to complete these tasks:

- Determine the memory required for the update.
- Set up and test the file transfer capability.
- Schedule the required downtime.

CCNA4-59 Chapter 4-2

TFTP Managed Cisco IOS Images

- When you are ready to do the update:
 - Shut down all interfaces not needed to perform the update.

- Back up the current operating system and the current configuration file to a TFTP server.
- Load the update for either the operating system or the configuration file.
- Test to confirm that the update works properly.

CCNA4-60 Chapter 4-2

- To copy IOS image software or any other files from a network device flash drive to a network TFTP server:
 - Ping the TFTP server to make sure you have access to it.
 - Verify that the TFTP server has sufficient disk space.
 - Use the show flash: command to determine the name of the files.
 - Copy the file(s) from the router to the TFTP server using the copy flash: tftp: command.
 - Each file requires a separate command.

Chapter 4-2

 Upgrading a system to a newer software version requires a different system image file to be loaded on the router.

Recovering Software Images

- When an IOS on a router is accidentally deleted from flash, the router is still operational because the IOS is running in RAM.
 - However, it is crucial that the router is not rebooted as a production device since it would not be able to find a valid IOS in flash.
 - When the router is rebooted and can no longer load an IOS it loads in ROMmon mode by default.
 - prompt = rommon >

CCNA4-64

Chapter 4-2

Recovering Software Images rommon 1 > IP ADDRESS=192.168.1.2 rommon 2 > IP_SUBNET_MASK=255.255.255.0 Case rommon 3 > DEFAULT GATEWAY=192.168.1.1 Sensitive rommon 4 > TFTP SERVER=192.168.1.1 rommon 5 > TFTP_FILE=c2800nm-ipbase-mz.124-15.T1.bin rommon 6 > tftpdnld IP_ADDRESS: 192.168.1.2 IP_SUBNET_MASK: 255.255.255.0 DEFAULT_GATEWAY: 192.168.1.1 TFTP_SERVER: 192.168.1.1 TFTP_FILE: c2800nm-ipbase-mz.124-15.T1.bin Invoke this command for disaster recovery only. WARNING: all existing data in all partitions on flash will be lost! Do you wish to continue? y/n: [n]: y <CR> Receiving file c2800nm-ipbase-mz.124-15.T1.bin from 192.168.1.2 !!!!!!!!!!!!!! <output omitted> program flash location 0x62430000 program flash location 0x62440000 <output omitted> program flash location 0x63080000 Either power cycle the router program flash location 0x63090000 or use the reset command. rommon 7 >

Troubleshooting Cisco IOS Configurations

- Cisco IOS troubleshooting commands:
 - show configured parameters and their values.
 - debug trace the execution of a process.

 By default, the router sends the output from debug commands to the console but it can be redirected to a logging server.

CCNA4-69

Chapter 4-2

Troubleshooting Cisco IOS Configurations

- Considerations when using the debug command:
 - Plan the use of the debug command. Use it carefully.
 - Gets CPU priority and may interfere with normal routing processes.
 - Can help resolve network issues even though you may take a temporary performance hit.
 - Can generate too much output. Know what you're looking for before you start.
 - Different debugs generate different output. Don't be caught by surprise.

CCNA4-70 Chapter 4-2

Recovering a Lost Password

- Password Recovery:
 - Recovering a password makes use of the router's configuration register.
 - This register is like the BIOS on a PC.
 - When a router boots, it will check the register and boot in the manner specified by the value in the register.
 - For this course, we will only concern ourselves with two registry values.
 - 0x2102: the default registry value.
 - 0x2142: instructs the router to bypass any startup configuration.

CNA4-71 Chapter 4-2

Recovering a Lost Password

- Password Recovery Basic Steps:
 - Connect to the router console port.
 - Issue the **show version** command to obtain the current registry value.

CCNA4-72 Unapter 4-2

Recovering a Lost Password

- Password Recovery Basic Steps:
 - Power cycle the router and press the "Break" key within 60 seconds. This puts the router in ROMmon mode.
 - Type **confreg 0x2142** at the **rommon 1** > prompt to specify bypassing the startup configuration.
 - Type reset or power cycle the router.
 - Bypass any default startup questions and type enable.
 - Copy the start up configuration to the running configuration.

CCNA4-73 Chapter 4-2

Recovering a Lost Password

- Password Recovery Basic Steps:
 - Change the password. (enable secret, Console or VTY)
 - Change the configuration register back to the default using the following command:

Router(config)#config-register 0x2102

 Copy the running configuration to the startup configuration and reload or power cycle the router.

We will do this in the lab.

CCNA4-74 Chapter 4-2