

Using ACLs to Secure Networks			
 The TCP data segment als requested serviceComm 	o identifies the port matching the non		
Port Number Range	Port Group		
0 to 1023	Well Known (Common) Ports		
1024 to 49151	Registered Ports		
49152 to 65535	Private and/or Dynamic Ports		
Registered TCP/UDP Common Ports: 1433 - MS SQL 2948 - WAP (MMS)	Well Known TCP/UDP Common Ports: 53 - DNS 161 - SNMP 531 - AOL Instant Messenger, IRC		
CCNA4-7	Chapter 5		

What is an ACL?

- By default, a router does not have any ACLs.
 - As each packet comes through an interface with an associated ACL:
 - The ACL is checked from top to bottom.
 - One line at a time.
 - Matches the pattern defined in the ACL statement to the specified area of the incoming packet.
 - Stops checking when it finds a matching statement.

Chapter 5

- Takes the defined action (permit or deny).
- If no match is present, the default is to deny the packet.

The Three P's

• ACL Functions: (Why do we need them?)

- Limit network traffic and increase network performance.
- Provide traffic flow control.
- Provide a basic level of security for network access.
- Decide which types of traffic are forwarded or blocked at the router interfaces.
- Allow an administrator to control what areas a client can access on a network.
- Screen certain hosts to either allow or deny access to part of a network.
- Grant or deny user permission to access only certain types of files such as FTP or HTTP.

Chapter 5

Protocol	Range
IP	1-99, 1300-1999
Extended IP	100-199, 2000-2699
Ethernet type code	200-299
Ethernet address	700-799
Transparent bridging (protocol type)	200-299
Transparent bridging (vendor code)	700-799
Extended transparent bridging DECnet and extended DECnet	1100-1199
	300-399
XNS	400-499
Extended XNS	500-599
AppleTalk	600-699
Source-route bridging (protocol type)	200-299
Source-route bridging (vendor code)	700-799
IPX	800-899
Extended IPX	900-999
IPX SAP	1000-1099

General Guidelines for Creating ACLs

• ACL Best Practices:

ACL Wildcard Masking

• Wildcard Masking:

- ACLs statements include wildcard masks.
 - (Remember OSPF network entries?)
- A wildcard mask is a string of binary digits telling the router to check specific parts of the subnet number.
 - The numbers 1 and 0 in the mask identify how to treat the corresponding IP address bits.
- Wildcard masks are referred to as an inverse mask.
 - Unlike a subnet mask in which binary 1 is equal to a match (network) and binary 0 is not a match (host), the reverse is true.
 - It also does not have to be contiguous 1's and 0's.

ACL Wildcard Masking			
Checking/Calc	ulating the Wildcard Mask		
Network 172.16.32.0	0 Subnet Mask <u>255.255.240.0</u>		
Subnet Mask	255 . 255 . 240 . 0		
<i>plus</i> Wildcard Mask	0. 0. 15.255		
	255 . 255 . 255 . 255		
We can calculate the Wil	dcard Mask using the Subnet Mask.		
	255 . 255 . 255 . 255		
<i>minus</i> Subnet Mask	255 . 255 . 240 . 0		
Wildcard Mask	0. 0. 15. 255		
CCNA4-46	Chapter 5		

Time for some Practice!			
RouterB(config)#access	-list 10 permit ? ?		
Permit the following networks:	Address / Wildcard Mask		
A 172.16.0.0 255.255.0.0	172.16.0.0 0.0.255.255		
B 172.16.1.0 255.255.255.0	172.16.1.0 0.0.0.255		
C 192.168.1.0 255.255.255.0	192.168.1.0 0.0.0.255		
D 172.16.16.0 255.255.240.0	172.16.32.0 0.0.15.255		
E 172.16.128.0 255.255.192.0	172.16.128.0 0.0.63.255		
Permit the following hosts:			
A 172.16.10.100	172.16.10.100 0.0.0.0		
B 192.168.1.100	192.168.1.100 0.0.0.0		
C All hosts	0.0.0.0 255.255.255.255		
CCN41-17	Chanter 5		

	Decimal	Binary	Just this host
IP Address	192.168.1.1	11000000.	10101000.00000001 .00000
Wildcard Mask	0.0.0.0.	00000000.	00000.0000000.0000000000000000000000000
	Decimal	Binary	Anv Host
IP Address	192.168.1.1	11000000.	10101000.00000001 .00000
Wildcard Mask	255.255.255.255	11111111.	11111111.111111111.11111
	Decimal	Binary	Subnet Hosts

ACL Wildcard Masking				
• Wildo	card Maski	ng:		
	_	Decimal	Binary	
IP Addres	ss	192.168.16.0	11000000.10101000.00010000	.00000000
Wildcard	Mask	0.0.15.255	00000000.0000000.00001111	.11111111
	All IP a	ddresses that ha first 20 bits of the	ave a match in the e address.	
	All Sub	nets 192.168.16	.0 to 192.168.31.0	
CNA4-49				Chapter 5

	ACL Wildcard Masking				
•	Wildo	card Maskin	g:		
			Decimal	Binary	
	IP Addres	ss	192.168.1.0	11000000.10101000.00000001	.00000000
	Wildcard Mask 0.0.254.255 00000000000000000000000000000000000		D.1111111		
l		All IP add firs the All Odd n	dresses that h t 16 bits of the last bit of the s numbered subr	ave a match in the address and second octet. nets in 192.168.0.0	
CCI	NA4-50				Chapter 5

Extended ACLs	
 The ability to filter on protocol and port number allows you to build very specific extended ACLs. 	
access-list 114 permit tcp 192.168.20.0 0.0.0.255 any eq 23 access-list 114 permit tcp 192.168.20.0 0.0.0.255 any eq 21 access-list 114 permit tcp 192.168.20.0 0.0.0.255 any eq 20	
access-list 114 permit tcp 192.168.20.0 0.0.0.255 any ec telnet access-list 114 permit tcp 192.168.20.0 0.0.0.255 any ec ftp access-list 114 permit tcp 192.168.20.0 0.0.0.255 any ec ftp-data	
CCNA4-68 Chapter 5	

Router(config)# access-list

access-list-number { permit | deny } protocol source [source-wildcard] destination [destination-wildcard] operator [operand (port number / name)] established

Chapter 5

- As with the Standard ACL:
 - The access-list command creates the list.
 - The access-group command links the list to an interface and specifies the direction (in/out) that is to be checked.
- The *no* form of the commands removes them.

<section-header><code-block><code-block><code-block><code-block></code></code></code></code>

Configuring Extended ACLs			
Router(config)# access-list			
access-list-number			
{ permit deny }			
protocol			
source [source-wildcard]			
destination [destination-wildcard]			
operator [operand (port number / name)] established			
 Can be the keyword or number of an Internet Protocol. 			
 Keywords and numbers are available through help (?). 			
 To match any internet protocol (including ICMP, TCP, UDP), use the ip keyword. 			
CCNA4-72 Chapter 5			

Router(config)# access-list

access-list-number
{ permit | deny }
protocol
source [source-wildcard]
destination [destination-wildcard]
operator [operand (port number / name)]
established
The source and destination IP address and wildcard mask.
The format and usage of the wildcard mask is the same as in
the standard ACL.
The keywords any and host can be used in the same manner

 The keywords any and host can be used in the same manner as the standard ACL.
 CCNA4-73 Chapter 5

Router(config)# access-list

access-list-number { permit | deny } protocol source [source-wildcard] destination [destination-wildcard] operator [operand (port number / name)] established

Chapter 5

- If the operator and operand is positioned after the source and source-wildcard, it refers to the source port.
- If the operator and operand is positioned after the destination and destination-wildcard, it refers to the destination port.

Router(config)# access-list

established traffic to come back in and block all other traffic.

Chapter 5

