Chapter 6: VLANs

Routing and Switching Essentials v6.0
Chapter 6 - Sections & Objectives

6.1 VLAN Segmentation

• Explain the purpose of VLANs in a switched network.
• Explain how a switch forwards frames based on VLAN configuration in a multi-switch environment.

6.2 VLAN Implementations

• Configure a switch port to be assigned to a VLAN based on requirements.
• Configure a trunk port on a LAN switch.
• Troubleshoot VLAN and trunk configurations in a switched network.

6.3 Inter-VLAN Routing Using Routers

• Describe the two options for configuring Inter-VLAN routing.
• Configure Legacy Inter-VLAN Routing.
• Configure Router-on-a-Stick Inter-VLAN Routing.
6.1 VLAN Segmentation
Overview of VLANs

VLAN Definitions
Overview of VLANs

VLAN Definitions (cont.)

- VLANs allow an administrator to segment networks based on factors such as function, project team, or application, without regard for the physical location of the user or device.

- VLANs enable the implementation of access and security policies according to specific groupings of users.

- A VLAN is a logical partition of a Layer 2 network.

- Multiple partitions can be created, allowing for multiple VLANs to co-exist.

- Each VLAN is a broadcast domain, usually with its own IP network.

- VLANs are mutually isolated, and packets can only pass between them via a router.

- The partitioning of the Layer 2 network takes place inside a Layer 2 device, usually via a switch.

- The hosts grouped within a VLAN are unaware of the VLAN’s existence.
Overview of VLANs

Benefits of VLANs

- Improved Security
- Reduced Cost
- Better Performance
- Smaller Broadcast Domains
- IT Efficiency
- Management Efficiency
- Simpler Project and Application Management
Overview of VLANs

Types of VLANs

- Data VLAN – user generated traffic
- Default VLAN – all switch ports become part of this VLAN until switch is configured, `show vlan brief`
- Native VLAN – used for untagged traffic
- Management VLAN – used to access management capabilities
Overview of VLANs

Types of VLANs (cont.)

VLAN 1

Switch# show vlan brief

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>active</td>
<td>Fa0/1, Fa0/2, Fa0/3, Fa0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fa0/5, Fa0/6, Fa0/7, Fa0/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fa0/9, Fa0/10, Fa0/11, Fa0/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fa0/13, Fa0/14, Fa0/15, Fa0/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fa0/17, Fa0/18, Fa0/19, Fa0/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fa0/21, Fa0/22, Fa0/23, Fa0/24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gi0/1, Gi0/2</td>
</tr>
<tr>
<td>1002</td>
<td>fddi-default</td>
<td>act/unsup</td>
<td></td>
</tr>
<tr>
<td>1003</td>
<td>token-ring-default</td>
<td>act/unsup</td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td>fddinet-default</td>
<td>act/unsup</td>
<td></td>
</tr>
<tr>
<td>1005</td>
<td>trnet-default</td>
<td>act/unsup</td>
<td></td>
</tr>
</tbody>
</table>

- All ports assigned to VLAN 1 by default.
- Native VLAN is VLAN 1 by default.
- Management VLAN is VLAN 1 by default.
Overview of VLANs

Voice VLANs

Switch port configured to support voice traffic:
- Port sends CDP frames to provide information used by the IP phone
- Port forwards frames associated with VLAN 150

Switch configured to support voice traffic:
- Uses VLAN 150 for voice VLAN
- Prioritizes voice traffic

Student
VLAN 20 - 172.17.20.25
Overview of VLANs

Voice VLANs (cont.)

- VoIP traffic is time-sensitive and requires:
 - Assured bandwidth to ensure voice quality.
 - Transmission priority over other types of network traffic.
 - Ability to be routed around congested areas on the network.
 - Delay of less than 150 ms across the network.

- The voice VLAN feature enables access ports to carry IP voice traffic from an IP phone.
VLANs in a Multi-Switched Environment

VLAN Trunks

The links between switches S1 and S2, and S1 and S3 are configured to transmit traffic coming from VLANs 10, 20, 30, and 99 across the network. This network could not function without VLAN trunks.
VLANs in a Multi-Switched Environment

VLAN Trunks (cont.)

- A VLAN trunk is a point-to-point link that carries more than one VLAN.
- A VLAN trunk is usually established between switches so same-VLAN devices can communicate, even if physically connected to different switches.
- A VLAN trunk is not associated to any VLANs; neither is the trunk ports used to establish the trunk link.
- Cisco IOS supports IEEE802.1q, a popular VLAN trunk protocol.
VLANs in a Multi-Switched Environment

Controlling Broadcast Domains with VLANs

No VLAN Segmentation

PC1 sends out a local Layer 2 broadcast. The switches forward the broadcast frame out all available ports.
VLANs in a Multi-Switched Environment

Controlling Broadcast Domains with VLANs

With VLAN Segmentation

PC1 sends out a local Layer 2 broadcast. The switches forward the broadcast frame only out ports configured for VLAN10.

VLAN trunks configured to support: VLAN 10 and 20
VLANs in a Multi-Switched Environment

Controlling Broadcast Domains with VLANs

- VLANs can be used to limit the reach of broadcast frames.
- A VLAN is a broadcast domain of its own.
- A broadcast frame sent by a device in a specific VLAN is forwarded within that VLAN only.
- VLANs help control the reach of broadcast frames and their impact in the network.
- Unicast and multicast frames are forwarded within the originating VLAN.
VLANs in a Multi-Switched Environment

Tagging Ethernet Frames for VLAN Identification

- Frame tagging is the process of adding a VLAN identification header to the frame.
- It is used to properly transmit multiple VLAN frames through a trunk link.
- Switches tag frames to identify the VLAN to which they belong.
- Different tagging protocols exist; IEEE 802.1Q is a very popular example.
- The protocol defines the structure of the tagging header added to the frame.
- Switches add VLAN tags to the frames before placing them into trunk links and remove the tags before forwarding frames through non-trunk ports.
- When properly tagged, the frames can transverse any number of switches via trunk links and still be forwarded within the correct VLAN at the destination.
VLANs in a Multi-Switched Environment

Tagging Ethernet Frames for VLAN Identification (cont.)

Fields in an Ethernet 802.1Q Frame
VLANs in a Multi-Switched Environment

Native VLANs and 802.1Q Tagging

- Control traffic sent on the native VLAN should not be tagged.
- Frames received untagged, remain untagged and are placed in the native VLAN when forwarded.
- If there are no ports associated to the native VLAN and no other trunk links, an untagged frame is dropped.
- When configuring a switch port on a Cisco switch, configure devices so that they do not send tagged frames on the native VLAN.
- In Cisco switches, the native VLAN is VLAN 1, by default.
VLANs in a Multi-Switched Environment

Voice VLAN Tagging

Switch port configured to support voice traffic:
- Instructs phone to tag voice frames with VLAN 150
- Prioritizes voice frames
- Forwards data frame for VLAN 20

Configured to tag voice traffic frames with VLAN 150.

```
S1# sh interfaces fa0/18 switchport
Name: Fa0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: Off
Access Mode VLAN: 20 (student)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: 150 (voice)
```

<output omitted>
VLANs in a Multi-Switched Environment

Activity – Predict Switch Behavior

Scenario 1: PC 1 sends a broadcast.
Scenario 2: PC 2 sends a broadcast.
Scenario 3: PC 3 sends a broadcast.
6.2 VLAN Implementations
VLAN Assignment

VLAN Ranges on Catalyst Switches

- Cisco Catalyst 2960 and 3560 Series switches support over 4,000 VLANs.
- VLANs are split into two categories:
 - Normal range VLANs
 - VLAN numbers from 1 to 1,005
 - Configurations stored in the vlan.dat (in the flash memory)
 - IDs 1002 through 1005 are reserved for Token Ring and Fiber Distributed Data Interface (FDDI) VLANs, automatically created and cannot be removed
 - Extended Range VLANs
 - VLAN numbers from 1,006 to 4,096
 - Configurations stored in the running configuration (NVRAM)
 - VLAN Trunking Protocol (VTP) does not learn extended VLANs
VLAN Assignment

VLAN Ranges on Catalyst Switches (cont.)

- Normal Range VLANs

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 default</td>
<td>active</td>
<td>Fa0/1, Fa0/2, Fa0/3, Fa0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/5, Fa0/6, Fa0/7, Fa0/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/9, Fa0/10, Fa0/11, Fa0/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/13, Fa0/14, Fa0/15, Fa0/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/17, Fa0/18, Fa0/19, Fa0/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/21, Fa0/22, Fa0/23, Fa0/24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gi0/1, Gi0/2</td>
</tr>
<tr>
<td>1002 fddi-default</td>
<td>act/unsup</td>
<td></td>
</tr>
<tr>
<td>1003 token-ring-default</td>
<td>act/unsup</td>
<td></td>
</tr>
<tr>
<td>1004 fddinet-default</td>
<td>act/unsup</td>
<td></td>
</tr>
<tr>
<td>1005 trnet-default</td>
<td>act/unsup</td>
<td></td>
</tr>
</tbody>
</table>
VLAN Assignment
Creating a VLAN

Cisco Switch IOS Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$1(config)# configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>$1(config)# vlan vlan-id</code></td>
<td>Create a VLAN with a valid id number.</td>
</tr>
<tr>
<td><code>$1(config-vlan)# name vlan-name</code></td>
<td>Specify a unique name to identify the VLAN.</td>
</tr>
<tr>
<td><code>$1(config-vlan)# end</code></td>
<td>Return to the privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Sample Configuration

```
$1# configure terminal
$1(config)# vlan 20
$1(config-vlan)# name student
$1(config-vlan)# end
```

Switch S1:
VLAN 20
"student"
VLAN Assignment

Assigning Ports to VLANs

Cisco Switch IOS Commands

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter global configuration mode.</td>
<td><code>S1(config)# configure terminal</code></td>
</tr>
<tr>
<td>Enter interface configuration mode.</td>
<td><code>S1(config)# interface interface_id</code></td>
</tr>
<tr>
<td>Set the port to access mode.</td>
<td><code>S1(config-if)# switchport mode access</code></td>
</tr>
<tr>
<td>Assign the port to a VLAN.</td>
<td><code>S1(config-if)# switchport access vlan vlan_id</code></td>
</tr>
<tr>
<td>Return to the privileged EXEC mode.</td>
<td><code>S1(config-if)# end</code></td>
</tr>
</tbody>
</table>

```bash
S1(config)# configure terminal
S1(config-if)# interface F0/18
S1(config-if)# switchport mode access
S1(config-if)# switchport access vlan 20
S1(config-if)# end
```
VLAN Assignment

Changing VLAN Port Membership

- Remove VLAN Assignment

- Interface F0/18 was previously assigned to VLAN 20 which is still active, F0/18 reset to VLAN1

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>no switchport access vlan</code></td>
<td>Remove the VLAN assignment from the port.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to the privileged EXEC mode.</td>
</tr>
</tbody>
</table>

```
S1# configure terminal
S1(config-if)# no switchport access vlan
S1(config-if)# end
S1# show vlan brief

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/1, Fa0/2, Fa0/3, Fa0/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/5, Fa0/6, Fa0/7, Fa0/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/9, Fa0/10, Fa0/11, Fa0/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/13, Fa0/14, Fa0/15, Fa0/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/17, Fa0/18, Fa0/19, Fa0/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fa0/21, Fa0/22, Fa0/23, Fa0/24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gi0/1, Gi0/2</td>
</tr>
<tr>
<td>20</td>
<td>student</td>
<td>active</td>
</tr>
<tr>
<td>1002</td>
<td>fddi-default</td>
<td>act/unmap</td>
</tr>
<tr>
<td>1003</td>
<td>token-ring-default</td>
<td>act/unmap</td>
</tr>
<tr>
<td>1004</td>
<td>fddinet-default</td>
<td>act/unmap</td>
</tr>
<tr>
<td>1005</td>
<td>tcrnet-default</td>
<td>act/unmap</td>
</tr>
</tbody>
</table>
```

© 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential
VLAN Assignment
Changing VLAN Port Membership (cont.)

Verification

```
S1# sh interfaces F0/18 switchport
Name: F0/18
Switchport: Enabled
Administrative Mode: static access
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
<output omitted>
```
VLAN Assignment

Changing VLAN Port Membership (cont.)

Assign Port to VLAN

```
S1$ config t
S1(config)# interface F0/11
S1(config-if)# switchport mode access
S1(config-if)# switchport access vlan 20
S1(config-if)# end
S1$
S1$ show vlan brief
```

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>F0/0, F0/2, F0/3, F0/4,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F0/5, F0/6, F0/7, F0/8,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F0/9, F0/10, F0/12, F0/13,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F0/14, F0/15, F0/16, F0/17,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F0/18, F0/19, F0/20, F0/21,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F0/22, F0/23, F0/24, Gi0/1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gi0/2</td>
</tr>
<tr>
<td>20</td>
<td>student</td>
<td>F0/11</td>
</tr>
<tr>
<td>1002</td>
<td>fddi-default</td>
<td>act/unsup</td>
</tr>
<tr>
<td>1003</td>
<td>token-ring-default</td>
<td>act/unsup</td>
</tr>
<tr>
<td>1004</td>
<td>fddinet-default</td>
<td>act/unsup</td>
</tr>
<tr>
<td>1005</td>
<td>trnet-default</td>
<td>act/unsup</td>
</tr>
<tr>
<td>S1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VLAN Assignment

Deleting VLANs

The entire vlan.dat file can be deleted using the `delete flash:vlan.dat` privileged EXEC mode command.

Abbreviated command version (`delete vlan.dat`) can be used if the vlan.dat file has not been moved from its default location.
VLAN Assignment

Verifying VLAN Information

show vlan Command

<table>
<thead>
<tr>
<th>Cisco IOS CLI Command Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>**show vlan [brief</td>
</tr>
</tbody>
</table>

- Display one line for each VLAN with the VLAN name, status, and its ports. **brief**
- Display information about a single VLAN identified by VLAN ID number. For vlan-id, the range is 1 to 4094. **id vlan-id**
- Display information about a single VLAN identified by VLAN name. The VLAN name is an ASCII string from 1 to 32 characters. **name vlan-name**
- Display VLAN summary information. **summary**

show interfaces Command

<table>
<thead>
<tr>
<th>Cisco IOS CLI Command Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>**show interfaces [interface-id</td>
</tr>
</tbody>
</table>

- Valid interfaces include physical ports (including type, module, and port number) and port channels. The port-channel range is 1 to 6. **interface-id**
- VLAN identification. The range is 1 to 4094. **vlan vlan-id**
- Display the administrative and operational status of a switching port, including port blocking and port protection settings. **switchport**
VLAN Assignment

Verifying VLAN Information (cont.)

```bash
S1# show vlan name student

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>student</td>
<td>active</td>
<td>Fa0/11, Fa0/12</td>
</tr>
</tbody>
</table>

VLAN Type SAID MTU Parent RingSo BridgeNp Stp BrdgMode Trs1 Trs2
--- -------- ------ -------- -------- ------- ------- ------- -------
20 100020 1500 - - - - - - 0 0

Remote SPAN VLAN
--------------
Disabled

Primary Secondary Type Ports
-------- -------- --------
```

```bash
S1# show interfaces vlan 20

Vlan20 is up, line protocol is down

Hardware is EtherSVI, address is 001c.57ec.0641 (bia 001c.57ec.0641)
MTU 1500 bytes, BW 10000000 Mbit, DLY 10 usec, reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
ARP type: ARPA, ARP Timeout 4:00:00
Last input never, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts (0 IP multicast)
0 runs, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 packets output, 0 bytes, 0 underruns
0 output errors, 0 interface resets
0 output buffer failures, 0 output buffers swapped out
```

```bash
S1# show vlan summary

<table>
<thead>
<tr>
<th>Number of existing VLANs</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of existing VTP VLANs</td>
<td>7</td>
</tr>
<tr>
<td>Number of existing extended VLANs</td>
<td>0</td>
</tr>
</tbody>
</table>
```
VLAN Trunks
Configuring IEEE 802.1q Trunk Links

Trunk Configuration

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter global configuration mode.</td>
<td><code>S1(config)# configure terminal</code></td>
</tr>
<tr>
<td>Enter interface configuration mode.</td>
<td><code>S1(config)# interface interface_id</code></td>
</tr>
<tr>
<td>Force the link to be a trunk link.</td>
<td><code>S1(config-if)# switchport mode trunk</code></td>
</tr>
<tr>
<td>Specify a native VLAN for untagged frames.</td>
<td><code>S1(config-if)# switchport trunk native vlan vlan_id</code></td>
</tr>
<tr>
<td>Specify the list of VLANs to be allowed on the trunk link.</td>
<td><code>S1(config-if)# switchport trunk allowed vlan vlan-list</code></td>
</tr>
<tr>
<td>Return to the privileged EXEC mode.</td>
<td><code>S1(config-if)# end</code></td>
</tr>
</tbody>
</table>

```
S1(config)# interface FastEthernet0/1
S1(config-if)# switchport mode trunk
S1(config-if)# switchport trunk native vlan 99
S1(config-if)# switchport trunk allowed vlan 10,20,30,99
S1(config-if)# end
```
VLAN Assignment
Configuring IEEE 802.1q Trunk Links (cont.)

Example Topology

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Description</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Faculty/Staff</td>
<td>172.17.10.0/24</td>
</tr>
<tr>
<td>20</td>
<td>Students</td>
<td>172.17.20.0/24</td>
</tr>
<tr>
<td>30</td>
<td>Guest</td>
<td>172.17.30.0/24</td>
</tr>
<tr>
<td>99</td>
<td>Native</td>
<td>172.17.99.0/24</td>
</tr>
</tbody>
</table>

Faculty
VLAN 10
172.17.10.21

Student
VLAN 20
172.17.20.22

Guest
VLAN 30
172.17.30.23
VLAN Trunks

Resetting the Trunk to Default State

Resetting Configured Values on Trunk Links

<table>
<thead>
<tr>
<th>Cisco Switch IOS Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>S1# configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>S1(config)# interface interface_id</code></td>
<td>Enter interface configuration mode.</td>
</tr>
<tr>
<td><code>S1(config-if)# no switchport trunk allowed vlan</code></td>
<td>Set trunk to allow all VLANs.</td>
</tr>
<tr>
<td><code>S1(config-if)# no switchport trunk native vlan</code></td>
<td>Reset native VLAN to default.</td>
</tr>
<tr>
<td><code>S1(config-if)# end</code></td>
<td>Return to the privileged EXEC mode.</td>
</tr>
</tbody>
</table>
VLAN Trunks

Resetting the Trunk to Default State (cont.)

```
S1(config)# interface f0/1
S1(config-if)# no switchport trunk allowed vlan
S1(config-if)# no switchport trunk native vlan
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled

Return Port to Access Mode

S1(config)# interface f0/1
S1(config-if)# switchport mode access
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
```
VLAN Trunks

Verifying Trunk Configuration

```
S1(config)# interface f0/1
S1(config-if)# switchport mode trunk
S1(config-if)# switchport trunk native vlan 99
S1(config-if)# end
S1# show interfaces f0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 99 (VLAN0099)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk associations: none
Administrative private-vlan trunk mappings: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
<output omitted>
```
Troubleshoot VLANs and Trunks

IP Addressing Issues with VLANs

- It is a common practice to associate a VLAN with an IP network.
- Because different IP networks only communicate through a router, all devices within a VLAN must be part of the same IP network to communicate.
- The figure displays that PC1 cannot communicate to the server because it has a wrong IP address configured.
Troubleshoot VLANs and Trunks

Missing VLANs

- If all the IP address mismatches have been solved, but the device still cannot connect, check if the VLAN exists in the switch.
Troubleshoot VLANs and Trunks

Missing VLANs (cont.)

- If the VLAN to which a port belongs is deleted, the port becomes inactive. All ports belonging to the VLAN that was deleted are unable to communicate with the rest of the network.

- Not functional until the missing VLAN is created using the `vlan vlan_id` global configuration.

```
S1# show mac address-table interface FastEthernet 0/1
Mac Address Table
---------------------------
Vlan  Mac Address       Type    Ports
-----  ---------------    ------    ----
10     000c.296a.a21c    DYNAMIC  Fa0/1
10     000f.34f9.9181    DYNAMIC  Fa0/1
Total Mac Addresses for this criterion: 2
```

```
S1# show interfaces FastEthernet 0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 10 (Inactive)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN Tagging: enabled
Voice VLAN: none
```
Troubleshoot VLANs and Trunks

Introduction to Troubleshooting Trunks

Note: To solve a native VLAN mismatch, configure the native VLAN to be the same VLAN on both sides of the link.
Troubleshoot VLANs and Trunks

Common Problems with Trunks

- Trunking issues are usually associated with incorrect configurations.
- The most common type of trunk configuration errors are:
 - Native VLAN mismatches
 - Trunk mode mismatches
 - Allowed VLANs on trunks
- If a trunk problem is detected, the best practice guidelines recommend to troubleshoot in the order shown above.
Troubleshoot VLANs and Trunks

Common Problems with Trunks (cont.)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Result</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native VLAN Mismatches</td>
<td>Poses a security risk and creates unintended results.</td>
<td>For example, one port is defined as VLAN 99 and the other is defined as VLAN 100.</td>
</tr>
<tr>
<td>Trunk Mode Mismatches</td>
<td>Causes loss of network connectivity.</td>
<td>For example, both local and peer switchport modes are configured as dynamic auto.</td>
</tr>
<tr>
<td>Allowed VLANs on Trunks</td>
<td>Causes unexpected traffic or no traffic to be sent over the trunk.</td>
<td>The list of allowed VLANs does not support current VLAN trunking requirements.</td>
</tr>
</tbody>
</table>
Troubleshoot VLANs and Trunks

Incorrect Port Mode

Scenario Topology

Output from Switch S3

s3# show interfaces trunk

s3#
s3# show interface f0/3 switchport
Name: Fa0/3
Switchport: Enabled
Administrative Mode: static access
Troubleshoot VLANs and Trunks

Incorrect VLAN List

Scenario Topology

Student Email Server
VLAN 20
172.17.20.10

Web/TFTP server
VLAN 10
172.17.10.30

Faculty
VLAN 10
172.17.10.24

Student
VLAN 20
172.17.20.25

Output from Switch S1

```
S1# show interfaces trunk
Port  Mode  Encapsulation  Status  Native vlan
Fa0/1  on  802.1q  trunking  99
Fa0/3  on  802.1q  trunking  99
Port  Vlans allowed on trunk
Fa0/1  10,99
Fa0/3  10,99
```

"I cannot connect to the student email server."
Troubleshoot VLANs and Trunks

Incorrect VLAN List (cont.)

- VLANs must be allowed in the trunk before their frames can be transmitted across the link.
- Use the `switchport trunk allowed vlan` command to specify which VLANs are allowed in a trunk link.
- Use the `show interfaces trunk` command to ensure the correct VLANs are permitted in a trunk.
6.3 Inter-VLAN Routing Using Routers
Inter-VLAN Routing Operation

What is Inter-VLAN Routing?

- Layer 2 switches cannot forward traffic between VLANs without the assistance of a router.
- Inter-VLAN routing is a process for forwarding network traffic from one VLAN to another, using a router.
Inter-VLAN Routing Operation

Legacy Inter-VLAN Routing

In the past:

- Actual routers were used to route between VLANs.
- Each VLAN was connected to a different physical router interface.
- Packets would arrive on the router through one interface, be routed and leave through another.
- Because the router interfaces were connected to VLANs and had IP addresses from that specific VLAN, routing between VLANs was achieved.
- Large networks with large number of VLANs required many router interfaces.
In this example, the router was configured with two separate physical interfaces to interact with the different VLANs and perform the routing.
Inter-VLAN Routing Operation

Router-on-a-Stick Inter-VLAN Routing

- The router-on-a-stick approach uses only one of the router’s physical interface.
- One of the router’s physical interfaces is configured as a 802.1Q trunk port so it can understand VLAN tags.
- Logical subinterfaces are created; one subinterface per VLAN.
- Each subinterface is configured with an IP address from the VLAN it represents.
- VLAN members (hosts) are configured to use the subinterface address as a default gateway.
Router interface configured to operate as a trunk link and is connected to a trunked switch port. The router performs inter-VLAN routing by accepting VLAN-tagged traffic on the trunk interface coming from the adjacent switch, and then, internally routing between the VLANs using subinterfaces. The router then forwards the routed traffic, VLAN-tagged for the destination VLAN, out the same physical interface as it used to receive the traffic.
Inter-VLAN Routing Operation

Identify the Types of Inter-VLAN Routing Activity

- Legacy or Router-on-a-Stick?

R1 Interface
- G0/0 Trunk Link

R1 Subinterfaces
- G0/0.10 10.17.10.1/28
- G0/0.20 10.17.20.1/28
- G0/0.30 10.17.30.1/28

S1 Ports
- G0/1 Trunk Link
- G0/3 = VLAN 10
- G0/9 = VLAN 20
- G0/17 = VLAN 30

End Devices
- PC1 - VLAN 10 10.17.10.4/28
- PC2 - VLAN 20 10.17.20.4/28
- PC3 - VLAN 30 10.17.30.4/28
Inter-VLAN Routing Operation

Identify the Types of Inter-VLAN Routing Activity (cont.)

- Legacy or Router-on-a-Stick?

- R1 Interface
 - G0/0 10.17.10.1/28
 - G0/1 10.17.20.1/28

- S1 Ports
 - G0/3 = VLAN 10
 - G0/17 = VLAN 20

- End Devices
 - PC1 - VLAN 10
 - 10.17.10.4/28
 - PC2 - VLAN 20
 - 10.17.20.4/28
Configure Legacy Inter-VLAN Routing: Preparation

- Legacy inter-VLAN routing requires routers to have multiple physical interfaces.
- Each one of the router’s physical interfaces is connected to a unique VLAN.
- Each interface is also configured with an IP address for the subnet associated with the particular VLAN.
- Network devices use the router as a gateway to access the devices connected to the other VLANs.
Configure Legacy Inter-VLAN Routing

Configure Legacy Inter-VLAN Routing:
Switch Configuration

R1(config)# interface g0/0
R1(config-if)# ip address 172.17.10.1 255.255.255.0
R1(config-if)# no shutdown

*Mar 20 01:42:12.951: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up
*Mar 20 01:42:13.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up

R1(config-if)# interface g0/1
R1(config-if)# ip address 172.17.30.1 255.255.255.0
R1(config-if)# no shutdown

*Mar 20 01:42:54.951: %LINK-3-UPDOWN: Interface GigabitEthernet0/1, changed state to up
*Mar 20 01:42:55.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up
R1(config-if)# end
R1# copy running-config startup-config
Configure Legacy Inter-VLAN Routing

Configure Legacy Inter-VLAN Routing: Router Interface Configuration

```
R1(config)# interface g0/0
R1(config-if)# ip address 172.17.10.1 255.255.255.0
R1(config-if)# no shutdown

*Mar 20 01:42:12.951: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up
*Mar 20 01:42:13.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up
R1(config-if)# interface g0/1
R1(config-if)# ip address 172.17.30.1 255.255.255.0
R1(config-if)# no shutdown

*Mar 20 01:42:54.951: %LINK-3-UPDOWN: Interface GigabitEthernet0/1, changed state to up
*Mar 20 01:42:55.951: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up
R1(config-if)# end
R1# copy running-config startup-config
```
An alternative to legacy inter-VLAN routing is to use VLAN trunking and subinterfaces.

- VLAN trunking allows a single physical router interface to route traffic for multiple VLANs.
- The physical interface of the router must be connected to a trunk link on the adjacent switch.
- On the router, subinterfaces are created for each unique VLAN.
- Each subinterface is assigned an IP address specific to its subnet or VLAN and is also configured to tag frames for that VLAN.
Configure Router-on-a-Stick Inter-VLAN Routing

Configure Router-on-a Stick: Switch Configuration

```
S1(config)# vlan 10
S1(config-vlan)# vlan 30
S1(config-vlan)# interface f0/5
S1(config-if)# switchport mode trunk
S1(config-if)# end
S1#
```
Configure Router-on-a-Stick Inter-VLAN Routing

Configure Router-on-a Stick: Router Subinterface Configuration

R1(config)# interface g0/0.10
R1(config-subif)# encapsulation dot1q 10
R1(config-subif)# ip address 172.17.10.1 255.255.255.0
R1(config-subif)# interface g0/0.30
R1(config-subif)# encapsulation dot1q 30
R1(config-subif)# ip address 172.17.30.1 255.255.255.0
R1(config)# interface g0
R1(config-if)# no shutdown

*Mar 20 00:20:59.299: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to down
*Mar 20 00:21:02.919: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up
*Mar 20 00:21:03.919: %LINEPROTO-5-UPDOWN: Line protocol on changed state to down
*Mar 20 00:21:02.919: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up
*Mar 20 00:21:03.919: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up
Configure Router-on-a-Stick Inter-VLAN Routing

Configure Router-on-a Stick: Verifying Subinterfaces

R1# show vlans
<output omitted>
Virtual LAN ID: 10 (IEEE 802.1Q Encapsulation)

<table>
<thead>
<tr>
<th>VLAN Trunk Interface: GigabitEthernet0/0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocols Configured: Address: Received: Transmitted:</td>
</tr>
<tr>
<td>IP 172.17.10.1 11 18</td>
</tr>
</tbody>
</table>

<output omitted>
Virtual LAN ID: 30 (IEEE 802.1Q Encapsulation)

<table>
<thead>
<tr>
<th>VLAN Trunk Interface: GigabitEthernet0/0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocols Configured: Address: Received: Transmitted:</td>
</tr>
<tr>
<td>IP 172.17.30.1 11 8</td>
</tr>
</tbody>
</table>
Configure Router-on-a-Stick Inter-VLAN Routing

Configure Router-on-a Stick: Verifying Subinterfaces (cont.)

```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP,M - mobile,
       B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF,
       IA - OSPF inter area
       N1 - OSPF NSSA external type 1,
       N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1,
       L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default,
       U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP,
       *H - NHRP home agent, ? - replication
       Gateway of last resort is not set

      172.17.0.0/16 is variably subnetted, 4 subnets, 2 masks
       C 172.17.10.0/24 is directly connected, GigabitEthernet0/0.10
       L 172.17.10.1/32 is directly connected, GigabitEthernet0/0.10
       C 172.17.30.0/24 is directly connected, GigabitEthernet0/0.30
       L 172.17.30.1/32 is directly connected, GigabitEthernet0/0.30
```
Configure Router-on-a-Stick Inter-VLAN Routing

Configure Router-on-a Stick: Verifying Routing

- Access to devices on remote VLANs can be tested using the `ping` command.
- The `ping` command sends an ICMP echo request to the destination address.
- When a host receives an ICMP echo request, it responds with an ICMP echo reply.
- `Tracert` is a useful utility for confirming the routed path taken between two devices.
6.4 Chapter Summary
Chapter Summary

Summary

- Explain the purpose of VLANs in a switched network.
- Explain how a switch forwards frames based on VLAN configuration in a multi-switch environment.
- Configure a switch port to be assigned to a VLAN based on requirements.
- Configure a trunk port on a LAN switch.
- Troubleshoot VLAN and trunk configurations in a switched network.
- Describe the two options for configuring inter-VLAN routing.
- Configure Legacy Inter-VLAN Routing.
- Configure Router-on-a-Stick Inter-VLAN Routing.