
1
Getting Started

with SQL Server
and PowerShell

In this chapter, we will cover:

ff Working with the sample code

ff Exploring the SQL Server PowerShell hierarchy

ff Installing SMO

ff Loading SMO assemblies

ff Discovering SQL-related cmdlets and modules

ff Creating a SQL Server instance object

ff Exploring SMO Server objects

Introduction
PowerShell is an administrative tool that has both shell and scripting capabilities that can
leverage Windows Management Instrumentation (WMI), COM components, and .NET libraries.
PowerShell is becoming more prominent with each generation of Microsoft products. Support
for it is being bundled, and improved, in a number of new and upcoming Microsoft product
releases. Windows Server, Exchange, ActiveDirectory, SharePoint, and even SQL Server, have
all shipped with added PowerShell support and cmdlets. Even vendors such as VMWare, Citrix,
Cisco, and Quest, to name a few, have provided ways to allow their products to be accessible
via PowerShell.

Getting Started with SQL Server and PowerShell

8

What makes PowerShell tick? Every systems administrator probably knows the pain of
trying to integrate heterogeneous systems using some kind of scripting. Historically, the
solution involved some kind of VBScript, some good old batch files, maybe some C#
code, some Perl—you name it. Sysadmins either had to resort to duct taping different
languages together to get things to work the way they intended, or just did not bother
because of the complicated code.

This is where PowerShell comes in. One of the strongest points for PowerShell is that it
simplifies automation and integration between different Microsoft ecosystems. As most
products have support for PowerShell, getting one system to talk to another is just a matter
of discovering what cmdlets, functions, or modules need to be pulled into the script. Even if
the product does not have support yet for PowerShell, it most likely has .NET or COM support,
which PowerShell can easily use.

Notable PowerShell V3 features
Some of the notable features in the latest PowerShell version are:

ff Workflows: PowerShell V3 introduces Windows PowerShell Workflow (PSWF),
which as stated in MSDN (http://msdn.microsoft.com/en-us/library/
jj134242.aspx):

helps automate the distribution, orchestration, and completion of
multi-computer tasks, freeing users and administrators to focus on
higher-level tasks.

PSWF leverages Windows Workflow Foundation 4.0 for the declarative framework,
but using familiar PowerShell syntax and constructs.

ff Robust sessions: PowerShell V3 supports more robust sessions. Sessions can now
be retained amid network interruptions. These sessions will remain open until they
time out.

ff Scheduled jobs: There is an improved support for scheduled tasks. There are new
cmdlets in the PSScheduledJob module that allow you to create, enable, and
manage scheduled tasks.

ff Module AutoLoading: If you use a cmdlet that belongs to a module that hasn't been
loaded yet, this will trigger PowerShell to search PSModulePath and load the first
module that contains that cmdlet. This is something we can easily test:

Chapter 1

9

#check current modules in session
Get-Module

#use cmdlet from CimCmdlets module, which
#is not loaded yet
Get-CimInstance win32_bios

#note new module loaded CimCmdlets
Get-Module

#use cmdlet from SQLPS module, which
#is not loaded yet
Invoke-Sqlcmd -Query "SELECT GETDATE()" -ServerInstance "KERRIGAN"

#note new modules loaded SQLPS and SQLASCmdlets
Get-Module

ff Web service support: PowerShell V3 introduces the Invoke-WebRequest cmdlet,
which sends HTTP or HTTPS requests to a web service and returns the object-
based content that can easily be manipulated in PowerShell. You can think about
downloading entire websites using PowerShell (and check out Lee Holmes' article on
it: http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-
entire-wordpress-blog/).

ff Simplified language syntax: Writing your Where-Object and Foreach-Object
has just become cleaner. Improvements in the language include supporting default
parameter values, and simplified syntax.

What you used to write in V1 and V2 with curly braces and $_ as follows:
Get-Service | Where-Object { $_.Status -eq 'Running' }

can now be rewritten in V3 as:

Get-Service | Where-Object Status -eq 'Running'

http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-entire-wordpress-blog/
http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-entire-wordpress-blog/

Getting Started with SQL Server and PowerShell

10

ff Improved Integrated Scripting Environment (ISE): The new ISE comes with
Intellisense, searchable commands in the sidebar, parameter forms, and live
syntax checking.

Before you start: Working with SQL Server
and PowerShell

Before we dive into the recipes, let's go over a few important concepts and terminologies that
will help you understand how SQL Server and PowerShell can work together:

ff PSProvider and PSDrive: PowerShell allows different data stores to be accessed as if
they are regular files and folders. PSProvider is similar to an adapter, which allows
these data stores to be seen as drives.

To get a list of the supported PSProvider objects, type:
Get-PSProvider

Chapter 1

11

You should see something similar to the following screenshot:

Depending on which instance of PSProvider is already available in your system,
yours may be slightly different:

ff PSDrive: Think of your C:\, but for data stores other than the file system. To get a
list of PSDrive objects in your system, type:
Get-PSDrive

You should see something similar to the following screenshot:

Note that there is a PSDrive for SQLServer, which can be used to navigate, access,
and manipulate SQL Server objects.

ff Execution policy: By default, PowerShell will abide by the current execution policy to
determine what kind of scripts can be run. For our recipes, we are going to assume
that you will run PowerShell as the administrator on your test environment. You will
also need to set the execution policy to RemoteSigned:
Set-ExecutionPolicy RemoteSigned

This setting will allow PowerShell to run digitally-signed scripts, or
local unsigned scripts.

ff Modules and snap-ins: Modules and snap-ins are ways to extend PowerShell. Both
modules and snap-ins can add cmdlets and providers to your current session. Modules
can additionally load functions, variables, aliases, and other tools to your session.

Getting Started with SQL Server and PowerShell

12

Snap-ins are Dynamically Linked Libraries (DLL), and need to be registered before
they can be used. Snap-ins are available in V1, V2, and V3. For example:
Add-PSSnapin SqlServerCmdletSnapin100

Modules, on the other hand, are more like your regular PowerShell .ps1 script files.
Modules are available in V2 and V3. You do not need to register a module to use it,
you just need to import:

Import-Module SQLPS

For more information on PowerShell basics, check out Appendix B,
PowerShell Primer.

Working with the sample code
Samples in this book have been created and tested against SQL Server 2012 on Windows
Server 2008 R2.

To work with the sample code in this book using a similar VM setup
that the book uses, see Appendix D, Creating a SQL Server VM.

How to do it...
If you want to use your current machine without creating a separate VM, as illustrated in
Appendix D, Creating a SQL Server VM, follow these steps to prepare your machine:

1.	 Install SQL Server 2012 on your current operating system—either Windows 7
or Windows Server 2008 R2. See the list of supported operating systems for
SQL Server 2012:
http://msdn.microsoft.com/en-us/library/ms143506.aspx

2.	 Install PowerShell V3.

Although PowerShell V3 comes installed with Windows 8 and Windows Server 2012,
at the time of writing this book these two operating systems are not listed in the list
of operating systems that SQL Server 2012 supports.

To install PowerShell V3 on Windows 7 SP1, Windows Server 2008 SP2,
or Windows Server 2008 R2 SP1:

Install Microsoft .NET Framework 4.0, if it's not already there.

http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://msdn.microsoft.com/en-us/library/ms143506.aspx

Chapter 1

13

Download and install Windows Management Framework 3.0, which contains
PowerShell V3. At the time of writing this book, the Release Candidate (RC)
is available from:
http://www.microsoft.com/en-us/download/details.
aspx?id=29939

3.	 Enable PowerShell V3 ISE. We will be using the improved Integrated Scripting
Environment in many samples in this book:

�� Right-click on Windows PowerShell on your taskbar and choose Run
as Administrator.

�� Execute the following:
PS C:\Users\Administrator>Import-Module ServerManager PS C:\
Users\Administrator>Add-WindowsFeature PowerShell-ISE

�� Test to ensure you can see and launch the ISE:
PS C:\Users\Administrator> powershell_ise

Alternatively you can go to Start | All Programs | Accessories | Windows
PowerShell | Windows PowerShell ISE.

�� Set execution policy to RemoteSigned by executing the following,
on the code editor:
Set-ExecutionPolicy RemoteSigned

If you want to run PowerShell V2 and V3 side by side, you can check out
Jeffery Hicks' article, PowerShell 2 and 3, Side by Side:
http://mcpmag.com/articles/2011/12/20/powershell-
2-and-3-side-by-side.aspx

See also
ff Check out the PowerShell V3 Sneak Peek Screencast:

http://technet.microsoft.com/en-us/edge/Video/hh533298

ff See also the SQL Server PowerShell documentation on MSDN:
http://msdn.microsoft.com/en-us/library/hh245198(SQL.110).aspx

http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://mcpmag.com/articles/2011/12/20/powershell-2-and-3-side-by-side.aspx
http://mcpmag.com/articles/2011/12/20/powershell-2-and-3-side-by-side.aspx
http://technet.microsoft.com/en-us/edge/Video/hh533298
http://technet.microsoft.com/en-us/edge/Video/hh533298
http://msdn.microsoft.com/en-us/library/hh245198(SQL.110).aspx
http://msdn.microsoft.com/en-us/library/hh245198(SQL.110).aspx

Getting Started with SQL Server and PowerShell

14

Exploring the SQL Server PowerShell
hierarchy

In SQL Server 2012, the original mini-shell has been deprecated, and SQLPS is now provided
as a module. Launching PowerShell from SSMS now launches a Windows PowerShell session,
imports the SQLPS module, and sets the current context to the item the PowerShell session was
launched from. DBAs and developers can then start navigating the object hierarchy from here.

Getting ready
Log in to SQL Server 2012 Management Studio.

How to do it...
In this recipe, we will navigate the SQL Server PowerShell hierarchy by launching a PowerShell
session from SQL Server Management Studio:

1.	 Right-click on your instance node.

2.	 Click on Start PowerShell. This will launch a PowerShell session and load the SQLPS
module. This window looks similar to a command prompt, with a prompt set to the
SQL Server object you launched this window from:

Note the starting path in this window.

3.	 Type dir. This should give you a list of all objects directly accessible from the current
server instance—in our case, from the default SQL Server instance KERRIGAN. Note
that dir is an alias for the cmdlet Get-ChildItem.

Chapter 1

15

This is similar to the objects you can find under the instance node in Object Explorer
in SQL Server Management Studio.

4.	 While our PowerShell window is open, let's explore the SQL Server PSDrive, or the
SQL Server data store, which PowerShell treats as a series of items. Type cd\. This will
change the path to the root of the current drive, which is our SQL Server PSDrive.

5.	 Type dir. This will list all Items accessible from the root SQL Server PSDrive. You
should see something similar to the following screenshot:

Getting Started with SQL Server and PowerShell

16

6.	 Close this window.

7.	 Go back to Management Studio, and right-click on one of your user databases.

8.	 Click on Start PowerShell. Note that this will launch another PowerShell session,
with a path that points to the database you right-clicked from:

Note that the starting path of this window is different from the starting
path when you first launched PowerShell in the second step. If you type
dir from this location, you will see all items that are sitting underneath
the AdventureWorks2008R2 database.

Chapter 1

17

You can see some of the items enumerated in this screen in SQL Server Management
Studio's Object Explorer, if you expand the AdventureWorks2008R2 database node.

How it works...
When PowerShell is launched through Management Studio, a context-sensitive PowerShell
session is created, which automatically loads the SQLPS module. This will be evident in
the prompt, which by default shows the current path of the object from which the Start
PowerShell menu item was clicked.

Getting Started with SQL Server and PowerShell

18

SQL Server 2008/2008 R2 was shipped with a SQLPS mini-shell, also referred to as SQLPS
utility. This can also be launched from SSMS by right-clicking on an object from Object
Explorer, and clicking on Start PowerShell. This mini-shell was designed to be a closed shell
preloaded with SQL Server extensions. This shell was meant to be used for SQL Server only,
which proved to be quite limiting because DBAs and developers often need to load additional
snap-ins and modules in order to integrate SQL Server with other systems through PowerShell.
The alternative way is to launch a full-fledged PowerShell session, and depending on your
PowerShell version either load snap-ins or load the SQLPS module.

In SQL Server 2012, the original mini-shell has been deprecated. When you launch a PowerShell
session from SSMS in SQL Server 2012, it launches the full-fledged PowerShell session, with the
updated SQLPS module loaded by default.

SQL Server is exposed as a PowerShell drive (PSDrive), which allows for traversing of objects
as if they are folders and files. Thus, familiar commands for traversing directories are supported
in this provider, such as dir or ls. Note that these familiar commands are often just aliases to
the real cmdlet name, in this case, Get-ChildItem.

When you launch PowerShell from Management Studio, you can immediately start navigating
the SQL Server PowerShell hierarchy.

Installing SMO
SQL Server Management Objects (SMO) was introduced with SQL Server 2005 to allow SQL
Server to be accessed and managed programmatically. SMO can be used in any .NET language,
including C#, VB.NET, and PowerShell. SMO is the key to automating most SQL Server tasks.
SMO is also backward compatible to previous versions of SQL Server, extending support all the
way to SQL Server 2000.

SMO is comprised of two distinct classes: instance classes and utility classes.

Instance classes are the SQL Server objects. Properties of objects such as the server, the
databases, and tables can be accessed and set using the instance classes.

Utility classes are helper or utility classes that accomplish common SQL Server tasks.
These classes belong to one of three groups: Transfer class, Backup and Restore classes,
or Scripter class.

To gain access to the SMO libraries, SMO needs to be installed, and the SQL Server-related
assemblies need to be loaded.

Chapter 1

19

Getting ready
There are a few ways to get SMO installed:

ff If you are installing SQL Server 2012, or already have SQL Server 2012, SMO can
be installed by installing Client Tools SDK. Get your install disk or image ready.

ff If you want just SMO installed without installing SQL Server, download the SQL
Server Feature 2012 pack.

How to do it...
If you are installing SQL Server or already have SQL Server:

1.	 Load up your SQL Server install disk or image, and launch the setup.exe file.

2.	 Select New SQL Server standalone installation or add features to an
existing installation.

3.	 Choose your installation type, and click on Next.

4.	 In the Feature Selection window, make sure you select Client Tools SDK.

5.	 Complete your installation.

After this, you should already have all the binaries needed to use SMO.

Getting Started with SQL Server and PowerShell

20

If you are not installing SQL Server, you must install SMO using the SQL Server Feature Pack
on the machine you are using SMO with:

1.	 Open your web browser, go to your favorite search engine, and search for
SQL Server 2012 Feature Pack.

2.	 Download the package.

3.	 Double-click on SharedManagementObjects.msi to install.

There's more...
By default, the SMO assemblies will be installed in <SQL Server Install Directory>\110\
SDK\Assemblies.

Loading SMO assemblies
Before you can use the SMO library, the assemblies need to be loaded. In SQL Server 2012,
this step is easier than ever.

Getting ready
SQL Management Objects(SMO) must have already been installed on your machine.

Chapter 1

21

How to do it...
In this recipe, we will load the SQLPS module.

1.	 Open up your PowerShell console, or PowerShell ISE, or your favorite
PowerShell editor.

2.	 Type the import-module command as follows:
Import-Module SQLPS

3.	 Confirm that the module is loaded:
Get-Module

How it works...
The way to load SMO assemblies has changed between different versions of PowerShell.
In PowerShell v1, loading assemblies can be done explicitly using the Load() or
LoadWithPartialName() methods. LoadWithPartialName() accepts the partial name
of the assembly, and loads from the application directory or the Global Assembly Cache (GAC):

[void][Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.
Smo")

Although LoadWithPartialName()is still supported and still remains a popular way
of loading assemblies, this method should not be used because it will be deprecated in
future versions.

Load() requires the fully qualified name of the assembly:

[void][Reflection.Assembly]::Load("Microsoft.SqlServer.Smo,
Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91")

In PowerShell V2, assemblies can be added by using Add-Type:

Add-Type -AssemblyName "Microsoft.SqlServer.Smo"

In PowerShell V3, loading these assemblies one by one is no longer necessary as long as the
SQLPS module is loaded:

Import-Module SQLPS

There may be cases where you will still want to load specific DLL versions if you are dealing
with specific SQL Server versions. Or you may want to load only specific assemblies without
loading the whole SQLPS module. In this case, the Add-Type command is still the viable
method of bringing the assemblies in.

Getting Started with SQL Server and PowerShell

22

There's more...
When you import the SQLPS module, you might see an error about conflicting or
unapproved verbs:

The names of some imported commands from the module SQLPS
include unapproved verbs that might make them less discoverable. To
find the commands with unapproved verbs, run the Import-Module
command again with the Verbose parameter. For a list of approved
verbs, type Get-Verb.

This means there are some cmdlets that do not conform to the PowerShell naming
convention, but the module and its containing cmdlets are still all loaded into your host. To
suppress this warning, import the module with the –DisableNameChecking parameter.

See also
ff The Installing SMO recipe

Discovering SQL-related cmdlets and
modules

In order to be effective at working with SQL Server and PowerShell, knowing how to explore
and discover cmdlets, snap-ins, and modules is in order.

Getting ready
Log in to your SQL Server instance, and launch PowerShell ISE. If you prefer the console, you
can also launch that instead.

How to do it...
In this recipe we will list the SQL-Server related commands and cmdlets.

1.	 To discover SQL-related cmdlets, type the following in your PowerShell editor and run:
#how many commands from modules that
#have SQL in the name
Get-Command -Module "*SQL*" | Measure-Object

#list all the SQL-related commands
Get-Command -Module "*SQL*" |
Select CommandType, Name, ModuleName |

Chapter 1

23

Sort -Property ModuleName, CommandType, Name |
Format-Table -AutoSize

After you execute the line, your output window should look similar to the
following screenshot:

2.	 To see which of these modules are loaded, type the following in your editor and run:
Get-Module -Name "*SQL*"

If you have already used any of the cmdlets in the previous step, then you should see
both SQLPS and SQLASCMDLETS. Otherwise, you will need to load these modules
before you can use them.

3.	 To explicitly load these modules, type the following and run:

Import-Module -Name "SQLPS"

Note that SQLASCMDLETS will be loaded when you load SQLPS.

How it works...
At the core of PowerShell are cmdlets. A cmdlet (pronounced commandlet) can be a compiled,
reusable .NET code, or an advanced function, or a workflow that typically performs a very
specific task. All cmdlets follow the verb-noun naming notation.

Getting Started with SQL Server and PowerShell

24

PowerShell ships with many cmdlets and can be further extended if the shipped cmdlets are
not sufficient for your purposes.

A legacy way of extending PowerShell is by registering additional snap-ins. A snap-in is a binary,
or a DLL, that contains cmdlets. You can create your own by building your own .NET source,
compiling, and registering the snap-in. You will always need to register snap-ins before you can
use them. Snap-ins are a popular way of extending PowerShell.

The following table summarizes common tasks with snap-ins:

Task Syntax

List loaded snap-ins Get-PSSnapin

List installed snap-ins Get-PSSnapin -Registered

Show commands in a snap-in Get-Command -Module "SnapinName"

Load a specific snap-in Add-PSSnapin "SnapinName"

When starting, PowerShell V2, modules are available as the improved and preferred method
of extending PowerShell.

A module is a package that can contain cmdlets, providers, functions, variables, and
aliases. In PowerShell V2, modules are not loaded by default, so required modules need
to be explicitly imported.

Common tasks with modules are summarized in the following table:

Task Syntax

List loaded modules Get-Module

List installed modules Get-Module -ListAvailable

Show commands in a module Get-Command -Module "ModuleName"

Load a specific module Import-Module -Name "ModuleName"

One of the improved features with PowerShell V3 is that it supports autoloading modules.
You do not need to always explicitly load modules before using the contained cmdlets. Using
the cmdlet in your script is enough to trigger PowerShell to load the module that contains it.

The SQL Server 2012 modules are located in the PowerShell/Modules folder of the
Install directory:

Chapter 1

25

There's more...
The following table shows the list of the SQLPS and SQLASCMDLETS cmdlets of this version:

CommandType Name ModuleName
Cmdlet Add-RoleMember SQLASCMDLETS

Cmdlet Backup-ASDatabase SQLASCMDLETS

Cmdlet Invoke-ASCmd SQLASCMDLETS

Cmdlet Invoke-ProcessCube SQLASCMDLETS

Cmdlet Invoke-ProcessDimension SQLASCMDLETS

Cmdlet Invoke-ProcessPartition SQLASCMDLETS

Cmdlet Merge-Partition SQLASCMDLETS

Cmdlet New-RestoreFolder SQLASCMDLETS

Cmdlet New-RestoreLocation SQLASCMDLETS

Cmdlet Remove-RoleMember SQLASCMDLETS

Cmdlet Restore-ASDatabase SQLASCMDLETS

Cmdlet Add-SqlAvailabilityDatabase SQLPS

Cmdlet Add-SqlAvailabilityGroupListenerStaticIp SQLPS

Cmdlet Backup-SqlDatabase SQLPS

Cmdlet Convert-UrnToPath SQLPS

Cmdlet Decode-SqlName SQLPS

Cmdlet Disable-SqlHADRService SQLPS

Cmdlet Enable-SqlHADRService SQLPS

Cmdlet Encode-SqlName SQLPS

Cmdlet Invoke-PolicyEvaluation SQLPS

Cmdlet Invoke-Sqlcmd SQLPS

Cmdlet Join-SqlAvailabilityGroup SQLPS

Cmdlet New-SqlAvailabilityGroup SQLPS

Cmdlet New-SqlAvailabilityGroupListener SQLPS

Cmdlet New-SqlAvailabilityReplica SQLPS

Cmdlet New-SqlHADREndpoint SQLPS

Getting Started with SQL Server and PowerShell

26

CommandType Name ModuleName
Cmdlet Remove-SqlAvailabilityDatabase SQLPS

Cmdlet Remove-SqlAvailabilityGroup SQLPS

Cmdlet Remove-SqlAvailabilityReplica SQLPS

Cmdlet Restore-SqlDatabase SQLPS

Cmdlet Resume-SqlAvailabilityDatabase SQLPS

Cmdlet Set-SqlAvailabilityGroup SQLPS

Cmdlet Set-SqlAvailabilityGroupListener SQLPS

Cmdlet Set-SqlAvailabilityReplica SQLPS

Cmdlet Set-SqlHADREndpoint SQLPS

Cmdlet Suspend-SqlAvailabilityDatabase SQLPS

Cmdlet Switch-SqlAvailabilityGroup SQLPS

Cmdlet Test-SqlAvailabilityGroup SQLPS

Cmdlet Test-SqlAvailabilityReplica SQLPS

Test-SqlDatabaseReplicaState SQLPS

To learn more about these cmdlets, use the Get-Help cmdlet. For example:

Get-Help "Invoke-Sqlcmd"
Get-Help "Invoke-Sqlcmd" -Detailed
Get-Help "Invoke-Sqlcmd" -Examples
Get-Help "Invoke-Sqlcmd" -Full

You can also check out the MSDN article on SQL Server database engine cmdlets:

http://msdn.microsoft.com/en-us/library/cc281847.aspx

When you load the SQLPS module, several assemblies are loaded into your host.

To get a list of SQL Server-related assemblies loaded with the SQLPS module, use the
following script, which will work in both PowerShell V2 and V3:

Import-Module SQLPS –DisableNameChecking

[appdomain]::CurrentDomain.GetAssemblies() |
Where {$_.FullName -match "SqlServer" } |
Select FullName

If you want to run on a strictly V3 environment, you can take advantage of the simplified syntax:

Import-Module SQLPS –DisableNameChecking

[appdomain]::CurrentDomain.GetAssemblies() |
Where FullName -match "SqlServer" |
Select FullName

http://msdn.microsoft.com/en-us/library/cc281847.aspx
http://msdn.microsoft.com/en-us/library/cc281847.aspx

Chapter 1

27

This will show you all the loaded assemblies, including their public key tokens:

More information on running PowerShell scripts
By default, PowerShell is running in restricted mode, in other words, it does not run scripts. To
run our scripts from the book, we will set the execution policy to RemoteSigned as follows:

Set-ExecutionPolicy RemoteSigned

See the Execution policy section in Appendix B, PowerShell Primer,
for further explanation of different execution policies.

If you save your PowerShell code in a file, you need to ensure it has a .ps1 extension otherwise
PowerShell will not run it. Ideally the filename you give your script does not have spaces. You can
run this script from the PowerShell console simply by calling the name. For example if you have a
script called myscript.ps1 located in the C:\ directory, this is how you would invoke it:

PS C:\> .\myscript.ps1

If the file or path to the file has spaces, then you will need to enclose the full path and file
name in single or double quotes, and use the call (&) operator:

PS C:\>&'.\my script.ps1'

If you want to retain the variables and functions included in the script, in memory, thus making
them available globally in your session, then you will need to dot source the script. To dot source
is literally to prefix the filename, or the path to the file, with a dot and a space:

PS C:\> . .\myscript.ps1

PS C:\> . '.\my script.ps1'

Getting Started with SQL Server and PowerShell

28

More information on mixed assembly error
You may encounter an error when running some commands that are built using older .NET
versions. Interestingly, you may see this while running your script in the PowerShell ISE, but
not necessarily in the shell.

Invoke-Sqlcmd: Mixed mode assembly is built against version 'V2.0.50727'
of the runtime and cannot be loaded in the 4.0 runtime without additional
configuration information.

A few steps are required to solve this issue:

1.	 Open Windows Explorer.

2.	 Identify the Windows PowerShell ISE install folder path. You can find this out by going
to Start | All Programs | Accessories | Windows | PowerShell, and then right-
clicking on the Windows PowerShell ISE menu item and choosing Properties.

For the 32-bit ISE, this is the default path:

%windir%\sysWOW64\WindowsPowerShell\v1.0\PowerShell_ISE.exe

For the 64-bit ISE, this is the default path:

%windir%\system32\WindowsPowerShell\v1.0\PowerShell_ISE.exe

3.	 Go to the PowerShell ISE Install folder.

4.	 Create an empty file called powershell_ise.exe.config.

5.	 Add the following snippet to the content and save the file:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<startup useLegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0" />
</startup>

<runtime>
<generatePublisherEvidence enabled="false" />
</runtime>
</configuration>

6.	 Reopen PowerShell ISE and retry the command that failed.

Chapter 1

29

Creating a SQL Server instance object
Most of what you will need to do in SQL Server will require a connection to an instance.

Getting ready
Open up your PowerShell console, the PowerShell ISE, or your favorite PowerShell editor.

You will need to note what your instance name is. If you have a default instance, you can
use your machine name. If you have a named instance, the format will be <machine
name>\<instance name>.

How to do it...
If you are connecting to your instance using Windows authentication, and using your current
Windows login, follow these steps:

1.	 Import the SQLPS module:
#import SQLPS module
Import-Module SQLPS –DisableNameChecking

2.	 Store your instance name in a variable as follows:
#create a variable for your instance name
$instanceName = "KERRIGAN"

3.	 If you are connecting to your instance using Windows authentication using the
account you are logged in as:

#create your server instance
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

If you are connecting using SQL Authentication, you will need to know the username
and password that you will use to authenticate. In this case, you will need to add
the following code, which will set the connection to mixed mode and prompt for the
username and password:

#set connection to mixed mode
$server.ConnectionContext.set_LoginSecure($false)

Getting Started with SQL Server and PowerShell

30

#set the login name
#of course we don't want to hardcode credentials here
#so we will prompt the user
#note password is passed as a SecureString type
$credentials = Get-Credential
#remove leading backslash in username
$login = $credentials.UserName -replace("\\", "")
$server.ConnectionContext.set_Login($login)
$server.ConnectionContext.set_SecurePassword($credentials.
Password)

#check connection string
$server.ConnectionContext.ConnectionString

Write-Verbose "Connected to $($server.Name)"
Write-Verbose "Logged in as $($server.ConnectionContext.
TrueLogin)"

How it works...
Before you can access or manipulate SQL Server programmatically, you will often need to
create references to its objects. At the most basic is the server.

The server instance uses the type Microsoft.SqlServer.Management.Smo.Server.
By default, connections to the server are made using trusted connections, meaning it uses
the Windows account you're currently using when you log into the server. So all it needs is
the instance name in its argument list:

#create your server instance
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

If, however, you need to connect using a SQL login, you will need to set the
ConnectionContext.LoginSecure property of the SMO Server class setting to false:

#set connection to mixed mode
$server.ConnectionContext.set_LoginSecure($false)

You will also need to explicitly set the username and the password. The best way to
accomplish this is to prompt the user for the credentials.

#prompt
$credentials = Get-Credential

Chapter 1

31

The credential window will capture the login and password. The Get-Credential cmdlet
returns the username with a leading backslash if the domain is not specified. In this case, we
want to remove this leading backslash.

#remove leading backslash in username
$login = $credentials.UserName -replace("\\","")

Once we have the login, we can pass it to the set_Login method. The password is already a
SecureString type, which is what the set_SecurePassword expects, so we can readily
pass this to the method:

$server.ConnectionContext.set_Login($login)
$server.ConnectionContext.set_SecurePassword($credentials.Password)

Should you want to hardcode the username and just prompt for the password, you can also
do this:

$login="belle"

#prompt
$credentials = Get-Credential –Credential $login

In the script, you will also notice we are using Write-Verbose instead of Write-Host to
display our results. This is because we want to be able to control the output without needing
to always go back to our script and remove all the Write-Host commands.

By default, the script will not display any output, that is, the $VerbosePreference special
variable is set to SilentlyContinue. If you want to run the script in verbose mode, you
simply need to add this line in the beginning of your script:

$VerbosePreference = "Continue"

When you are done, you just need to revert the value to SilentlyContinue:

$VerbosePreference = "SilentlyContinue"

See also
ff The Loading SMO assemblies recipe

ff The Creating SQL Server instance using SMO recipe

Getting Started with SQL Server and PowerShell

32

Exploring SMO server objects
SQL Management Objects (SMO) comes with a hierarchy of objects that are accessible
programmatically. For example, when we create an SMO server variable, we can then access
databases, logins, and database-level triggers. Once we get a handle of individual databases,
we can then traverse the tables, stored procedures, and views that it contains. Since many
tasks involve SMO objects, you will be at an advantage if you know how to discover and
navigate these objects.

Getting ready
Open up your PowerShell console, the PowerShell ISE, or your favorite PowerShell editor.

You will also need to note what your instance name is. If you have a default instance, you
can use your machine name. If you have a named instance, the format will be <machine
name>\<instance name>

How to do it...
In this recipe, we will start exploring the hierarchy of objects with SMO.

1.	 Import the SQLPS module as follows:
Import-Module SQLPS -DisableNameChecking

2.	 Create a server instance as follows:
$instanceName = "KERRIGAN"

$server = New-Object `
 -TypeName Microsoft.SqlServer.Management.Smo.Server `
 -ArgumentList $instanceName

3.	 Get the SMO objects directly accessible from the $server object:
$server |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

4.	 Now let's check SMO objects under databases. Execute the following line:
$server.Databases |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

Chapter 1

33

5.	 To check out the tables, you can type and execute:
$server.Databases["AdventureWorks2008R2"].Tables |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

How it works...
SMO contains a hierarchy of objects. At the very top there is a server object, which in turn
contains objects such as Databases, Configuration, SqlMail, LoginCollection,
and the like. These objects in turn contain other objects, for example, Databases is a
collection that contains Database objects, and a Database in turn, contains Tables
and so on.

See also
ff The Loading SMO assemblies recipe

ff The Creating a SQL Server instance using SMO recipe

ff You can also check out the SMO object model diagram from MSDN:
http://msdn.microsoft.com/en-us/library/ms162209(SQL.110).aspx

http://msdn.microsoft.com/en-us/library/ms162209(SQL.110).aspx
http://msdn.microsoft.com/en-us/library/ms162209(SQL.110).aspx

2
SQL Server and

PowerShell Basic Tasks
In this chapter, we will cover:

ff Listing SQL Server instances

ff Discovering SQL Server services

ff Starting/stopping SQL Server services

ff Listing SQL Server configuration settings

ff Changing SQL Server instance configurations

ff Searching for database objects

ff Creating a database

ff Altering database properties

ff Dropping a database

ff Changing a database owner

ff Creating a table

ff Creating a view

ff Creating a stored procedure

ff Creating a trigger

ff Creating an index

ff Executing a query / SQL script

ff Performing bulk export using Invoke-Sqlcmd

ff Performing bulk export using bcp

ff Performing bulk import using BULK INSERT

ff Performing bulk import using bcp

SQL Server and PowerShell Basic Tasks

36

Introduction
This chapter demonstrates scripts and snippets of code that accomplish some basic SQL
Server tasks, using PowerShell. We will start with simple tasks, such as listing SQL Server
instances and creating objects such as tables, indexes, stored procedures, and functions,
to get you comfortable with working with SQL Server programmatically.

You will find that many of the recipes can be accomplished using PowerShell and SQL
Management Objects (SMO). SMO is a library that exposes SQL Server classes, which
allows for programmatic manipulation and automation of many database tasks. For some
recipes, we will also explore alternative ways of accomplishing the same tasks, using
different native PowerShell cmdlets.

SMO is explained in more detail in Chapter 1, Getting Started
with SQL Server and PowerShell.

Even though we are exploring how to create some common database objects using
PowerShell, I would like to note that PowerShell is not always the best tool for the task.
There will be tasks that are best left accomplished using T-SQL. Even so, it is still good
to know what is possible with PowerShell and how to do it, so that you know you have
alternatives depending on your requirements or situation.

Development environment
The development environment used in the recipes has the following configurations:

Component Syntax
Domain QUERYWORKS

Machine name KERRIGAN

Instances KERRIGAN or (local) or localhost

SQL01

Databases AdventureWorks2008R2

Domain accounts QUERYWORKS\aterra

QUERYWORKS\jraynor

QUERYWORKS\mhorner

Administrator
To simplify the exercises, run the PowerShell scripts as an administrator in your box. In addition,
ensure this account has full access to the SQL Server instance on which you are working.

Chapter 2

37

PowerShell ISE
We will be using the PowerShell ISE for all the scripts in this task. These are some things you
need to remember.

The Script Pane is where you will be typing in your PowerShell code. The Output Pane is
where you will see the results.

The Command Pane is where you can type ad hoc commands, which get executed as soon
as you press Enter.

For our recipes, we will be using the Script Pane to write and execute our scripts. Depending
on the task, you may need to do one of the following:

ff Click on the Run Script icon (green arrow) to run all code in the script

ff Click on the Run Selection icon right beside it to run only highlighted code

SQL Server and PowerShell Basic Tasks

38

Running scripts
If you prefer running the script from the PowerShell console rather than running the
commands from the ISE, you can follow these steps:

6.	 Save the file with a .ps1 extension.

7.	 Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell.

8.	 We want to be able to run locally created scripts. To do this, we need to
change the ExecutionPolicy to RemoteSigned.

9.	 Set ExecutionPolicy to RemoteSigned.

See the Execution Policy section of the Running PowerShell scripts
recipe in Appendix B, PowerShell Primer, for further explanation of
different execution policies.

10.	 You can pick from the following options:

�� Change directory to where your script is stored and invoke your script
in this way:
PS C:\>.\SampleScript.ps1 param1 param2

�� Use the full qualified path to run the .ps1 file:
PS C:\>#if your path has no space

PS C:\>C:\MyScripts\SampleScript.ps1 param1 param2

PS C:\>#if your path has space

PS C:\>& "C:\My Scripts\SampleScript.ps1" param1 param2

�� If you want to retain the functions and variables in your script throughout
your session, you can dot source your file:

PS C:\>. .\SampleScript.ps1 param1 param2

PS C:\>. "C:\My Scripts\SampleScript.ps1" param1 param2

Chapter 2

39

Listing SQL Server instances
In this recipe, we will list all SQL Server instances in the local network.

Getting ready
Log in to the server that has your SQL Server development instance, as an administrator.

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Let's use the Start-Service cmdlet to start SQLBrowser:
Import-Module SQLPS -DisableNameChecking

#sql browser must be installed and running
Start-Service "SQLBrowser"

3.	 Next, you need to create a ManagedComputer object to get access to instances.
Type the following script and run it:
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.
Wmi.ManagedComputer' $instanceName

#list server instances
$managedComputer.ServerInstances

Your result should look similar to the one shown in the following screenshot:

Note that $managedComputer.ServerInstances gives you not only instance
names, but also additional properties such as ServerProtocols, Urn, State,
and so on.

SQL Server and PowerShell Basic Tasks

40

4.	 Confirm that these are the same instances you see in Management Studio. Open up
Management Studio.

5.	 Go to Connect | Database Engine.

6.	 In the Server Name drop-down, click on Browse for More.

7.	 Select the Network Servers tab, and check the instances listed. Your screen should
look similar to this:

How it works...
All services in a Windows operating system are exposed and accessible using Windows
Management Instrumentation (WMI). WMI is Microsoft's framework for listing, setting,
and configuring any Microsoft-related resource. This framework follows Web-based
Enterprise Management (WBEM). Distributed Management Task Force, Inc. defines
WBEM as follows (http://www.dmtf.org/standards/wbem):

a set of management and internet standard technologies developed to unify the
management of distributed computing environments. WBEM provides the ability
for the industry to deliver a well-integrated set of standard-based management
tools, facilitating the exchange of data across otherwise disparate technologies
and platforms.

In order to access SQL Server WMI-related objects, you can create a
WMI ManagedComputer instance:

$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.
ManagedComputer' $instanceName

The ManagedComputer object has access to a ServerInstance property, which in
turn lists all available instances in the local network. These instances, however, are only
identifiable if the SQL Server Browser service is running.

Chapter 2

41

SQL Server Browser is a Windows service that can provide information on installed instances
in a box. You need to start this service if you want to list the SQL Server-related services.

There's more...
An alternative to using the ManagedComputer object is using the System.Data.Sql.
SQLSourceEnumerator class to list all the SQL Server instances in the local network, thus:

[System.Data.Sql.SqlDataSourceEnumerator]::Instance.GetDataSources() |
Select ServerName, InstanceName, Version |
Format-Table -AutoSize

When you execute this, your result should look similar to the following screenshot:

Yet another way to get a handle to the SQL Server WMI object is by using the Get-WmiObject
cmdlet. This will not, however, expose exactly the same properties exposed by the Microsoft.
SqlServer.Management.Smo.Wmi.ManagedComputer object.

To do this, you will need to discover first what namespace is available in your environment, thus:

$hostname = "KERRIGAN"

$namespace = Get-WMIObject -ComputerName $hostName -NameSpace root\
Microsoft\SQLServer -Class "__NAMESPACE" |
 Where Name -Like "ComputerManagement*"

If you are using PowerShell V2, you will have to change the Where cmdlet
usage to use the curly braces ({}) and the $_ variable, thus:
Where {$_.Name -Like "ComputerManagement*" }

For SQL Server 2012, this value is:

ROOT\Microsoft\SQLServer\ComputerManagement11

Once you have the namespace, you can use this value with Get-WmiObject to retrieve the
instances. One property we can use to filter is SqlServiceType.

http://msdn.microsoft.com/en-us/library/ms179591.aspx

SQL Server and PowerShell Basic Tasks

42

According to MSDN (http://msdn.microsoft.com/en-us/library/ms179591.aspx),
the following are the values of SqlServiceType:

SqlServiceType Description
1 SQL Server service
2 SQL Server Agent service
3 Full-text Search Engine service
4 Integration Services service
5 Analysis Services service
6 Reporting Services service
7 SQL Server Browser service

Thus, to retrieve the SQL Server instances, you need to filter for SQL Server service, or
SQLServiceType = 1.

Get-WmiObject -ComputerName $hostname `
-Namespace "$($namespace.__NAMESPACE)\$($namespace.Name)" `
-Class SqlService |
Where SQLServiceType -eq 1 |
Select ServiceName, DisplayName, SQLServiceType |
Format-Table –AutoSize

If you are using PowerShell V2, you will have to change the Where
cmdlet usage to use the curly braces ({}) and the $_ variable:
Where {$_.SQLServiceType -Like –eq 1 }

Your result should look similar to the following screenshot:

http://msdn.microsoft.com/en-us/library/ms179591.aspx

Chapter 2

43

Discovering SQL Server services
In this recipe, we enumerate all SQL Server services and list their status.

Getting ready
Check which SQL Server services are installed in your instance. Go to Start | Run and type
services.msc. You should see a screen similar to this:

How to do it...
Let's assume you are running this script on the server box.

1.	 Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2.	 Add the following code and execute it:
Import-Module SQLPS

#replace KERRIGAN with your instance name
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.
Wmi.ManagedComputer' $instanceName

#list services
$managedComputer.Services |
Select Name, Type, Status, DisplayName |
Format-Table -AutoSize

SQL Server and PowerShell Basic Tasks

44

Your result will look similar to the one shown in the following screenshot:

Items listed on your screen will vary depending on the features installed and
running in your instance.

3.	 Confirm that these are the services that exist in your server. Check your
services window.

How it works...
Services that are installed on a system can be queried using WMI. Specific services for SQL
Server are exposed through SMO's WMI ManagedComputer object. Some of the exposed
properties include:

ff ClientProtocols

ff ConnectionSettings

ff ServerAliases

ff ServerInstances

ff Services

There's more...
An alternative way to get SQL Server-related services is by using Get-WMIObject. We
will need to pass in the hostname, as well as SQL Server WMI provider for the Computer
Management namespace. For SQL Server 2012, this value is:

ROOT\Microsoft\SQLServer\ComputerManagement11

The script to retrieve the services is provided in the following code. Note that we are
dynamically composing the WMI namespace here.

$hostName = "KERRIGAN"

$namespace = Get-WMIObject -ComputerName $hostName -NameSpace root\
Microsoft\SQLServer -Class "__NAMESPACE" |

Chapter 2

45

 Where Name -Like "ComputerManagement*"
Get-WmiObject -ComputerName $hostname -Namespace "$($namespace.__
NAMESPACE)\$($namespace.Name)" -Class SqlService |
Select ServiceName

Yet another alternative but less accurate way of listing possible SQL Server-related services is
the following snippet of code:

#alterative - but less accurate
Get-Service *SQL*

It uses the Get-Service cmdlet and filters based on the service name. It is less accurate
because this cmdlet grabs all processes that have SQL in the name but may not necessarily
be SQL Server-related. For example, if you have MySQL installed, that will get picked up as a
process. Conversely, this cmdlet will not pick up SQL Server-related services that do not have
SQL in the name, such as ReportServer.

See also
ff The Listing SQL Server instances recipe

Starting/stopping SQL Server services
This recipe describes how to start and/or stop SQL Server services.

Getting ready
Check which SQL services are installed in your machine. Go to Start | Run and type
Services.msc. You should see a screen similar to this:

SQL Server and PowerShell Basic Tasks

46

How to do it...
Let's look at the steps to toggle states for your SQL Server services:

1.	 Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2.	 Add the following code. Note that this code will work in both PowerShell V2 and V3:
$Verbosepreference = "Continue"
$services = @("SQLBrowser", "ReportServer")
$hostName = "KERRIGAN"

$services | ForEach-Object {
 $service = Get-Service -Name $_
 if($service.Status -eq "Stopped")
 {
 Write-Verbose "Starting $($service.Name)"
 Start-Service -Name $service.Name
 }
 else
 {
 Write-Verbose "Stopping $($service.Name)"
 Stop-Service -Name $service.Name
 }
}
$VerbosePreference = "SilentlyContinue"

3.	 Execute and confirm the service status changed accordingly. Go to Start | Run and
type Services.msc.

Chapter 2

47

For example, in our previous sample, both SQLBrowser and ReportServer were
initially running. Once the script was executed, both services stopped.

How it works...
In this recipe, we picked two services—SQLBrowser and ReportServer—that we want to
manipulate and saved them into an array:

$services = @("SQLBrowser","ReportServer")

We then pipe the array contents to a Foreach-Object cmdlet, so we can determine what
action to perform for each service. For our purposes, if the service is stopped, we want to
start it. Otherwise, we stop it. Note that this code will work in both PowerShell V2 and V3:

$services | ForEach-Object {
 $service = Get-Service -Name $_
 if($service.Status -eq "Stopped")
 {
 Write-Verbose "Starting $($service.Name)"
 Start-Service -Name $service.Name
 }
 else
 {
 Write-Verbose "Stopping $($service.Name)"
 Stop-Service -Name $service.Name
 }
}

You may also want to determine dependent services, or services that rely on a particular
service. You may want to consider synchronizing the starting/stopping of these services with
the main service they depend on.

To identify dependent services, you can use the DependentServices property of the
System.ServiceProcess.ServiceController class:

$services | ForEach-Object {
 $service = Get-Service -Name $_
 Write-Verbose "Services Dependent on $($service.Name)"
 $service.DependentServices | Select Name
}

SQL Server and PowerShell Basic Tasks

48

The following list shows the properties and methods of the System.ServiceProcess.
ServiceController class, which is generated from the Get-Service cmdlet:

An alternative way of working with SQL Server services is by using the Microsoft.
SqlServer.Management.Smo.Wmi.ManagedComputer class. Note that the following
code will work in both PowerShell V2 and V3:

Import-Module SQLPS -DisableNameChecking

#list services you want to start/stop here
$services = @("SQLBrowser", "ReportServer")
$instanceName = "KERRIGAN"
$managedComputer = New-Object 'Microsoft.SqlServer.Management.Smo.Wmi.
ManagedComputer' $instanceName

#go through each service and toggle the state
$services | ForEach-Object {
 $service = $managedComputer.Services[$_]
 switch($service.ServiceState)
 {
 "Running"

Chapter 2

49

{
 Write-Verbose "Stopping $($service.Name)"
 $service.Stop()
 }
 "Stopped"
 {
 Write-Verbose "Starting $($service.Name)"
 $service.Start()
 }
 }
}

When using the Smo.Wmi.ManagedComputer object, you can simply use the Stop method
provided with the class and the Start method to stop and start the service respectively.

The following list shows the properties and methods available with the Smo.Wmi.
ManagedComputer class:

SQL Server and PowerShell Basic Tasks

50

There's more...
To explore available cmdlets that can help manage and maintain services, use the
following command:

Get-Command -Name *Service* -CommandType Cmdlet -ModuleName
PowerShell

This will enumerate all cmdlets that have "Service" in the name:

All of these cmdlets relate to Windows services, with the exception of New-
WebServiceProxy, which is described in MSDN as a cmdlet that creates a Web service
proxy object that lets you use and manage the Web service in Windows PowerShell.

Here is a brief comparison between these service-oriented cmdlets and the methods available
for the object of Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer
service, as discussed in the recipe:

Service Methods Service-related cmdlets
Start() Start-Service

Stop() Stop-Service

Continue() Resume-Service

Pause() Suspend-Service

Refresh()

Restart-Service

Note that there isn't necessarily a one-to-one mapping between the methods of the Service
class and the service cmdlets. For example, there is a Restart-Service cmdlet, but there
isn't a Restart method.

Chapter 2

51

This should not raise alarm bells, though. Although it may seem that some methods or cmdlets
may be missing, it is important to note that PowerShell is a rich scripting platform and language.
In addition to its own cmdlets, it leverages the whole .NET platform. Whatever you can do in
the .NET platform, you most likely can do using PowerShell. Even if you think something is not
doable when you look at a specific class or object, there is most likely a cmdlet somewhere that
can perform that same task, or vice versa. If you still cannot find your ideal solution, you can
create your own—be it a class, a module, a cmdlet, or a function.

See also
ff The Discovering SQL Server services recipe

Listing SQL Server configuration settings
This recipe walks through how to list SQL Server configurable and non-configurable instance
settings using PowerShell.

How to do it...
1.	 Open the PowerShell ISE. Go to Start | Accessories | Windows PowerShell |

Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

To explore what members and methods are included in the SMO server, use the
following code snippet in PowerShell V3:
#Explore: get all properties available for a server object
#http://msdn.microsoft.com/en-us/library/ms212724.aspx
$server | Get-Member | Where MemberType -eq "Property"

In PowerShell V2, you will need to slightly modify your syntax:
$server | Get-Member | Where {$_.MemberType -eq "Property"}

SQL Server and PowerShell Basic Tasks

52

#The Information class lists nonconfigrable instance settings,
#like BuildNumber, OSVersion, ProductLevel etc
#Also includes settings specified during install
$server.Information.Properties |
Select Name, Value |
Format-Table –AutoSize

3.	 Next, let's look at the Settings class:
#The Settings lists some instance level configurable settings,
#like LoginMode, BackupDirectory etc
$server.Settings.Properties |
Select Name, Value |
Format-Table -AutoSize

Chapter 2

53

4.	 The UserOptions class lists user-specific options:
#The UserOptions include options that can be set for user
#connections, for example
#AnsiPadding, AnsiNulls, NoCount, QuotedIdentifier
$server.UserOptions.Properties |
Select Name, Value |
Format-Table -AutoSize

SQL Server and PowerShell Basic Tasks

54

5.	 The Configuration class contains instance-specific settings, similar to what you
will see when you run sp_configure.

#The Configuration class contains instance specific settings,
#like AgentXPs, clr enabled, xp_cmdshell
#You will normally see this when you run
#the stored procedure sp_configure
$server.Configuration.Properties |
Select DisplayName, Description, RunValue, ConfigValue |
Format-Table –AutoSize

How it works...
Most SQL Server settings and configurations are exposed using SMO or WMI, which allows
for these values to be programmatically retrieved.

At the core of accessing configuration details is the SMO Server class. This class exposes
a SQL Server instance's properties, some of which are configurable, while some are not.

To create an SMO Server class, you will need to know your instance name and pass it as
an argument:

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

Chapter 2

55

The following are the four main properties that store settings/configurations that we looked at
in this recipe:

Server property Description
Information Includes non-configurable instance settings, such

as BuildNumber, Edition, OSVersion, and
ProductLevel

It also includes settings specified during install,
for example Collation, MasterDBPath, and
MasterDBLogPath

Settings Lists some instance-level configurable settings,
such as LoginMode and BackupDirectory

UserOptions Contain options that can be set for user
connections, such as AnsiWarnings,
AnsiNulls, AnsiPadding, and NoCount

Configuration Instance-specific settings, such as AgentXPs,
remote access, clr enabled, and xp_
cmdshell, which you will normally see and set
when you use the sp_configure system stored
procedure

See also
ff Check out MSDN for complete documentation on SMO classes:

http://msdn.microsoft.com/en-us/library/ms212724.aspx

Changing SQL Server instance
configurations

This recipe walks through how to change instance configuration settings using PowerShell.

Getting ready
For this recipe, we will:

ff Change FillFactor to 60 percent

ff Enable SQL Server Agent

ff Set minimum server memory to 500 MB

ff Change authentication method to Mixed

SQL Server and PowerShell Basic Tasks

56

How to do it...
Let's change some SQL Server settings using PowerShell:

1.	 Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:
<#
run value vs config value
config_value," is what the setting has been set to (but may or
may not be what SQL Server is actually running now. Some settings
don't go into effect until SQL Server has been restarted, or
until the RECONFIGURE WITH OVERRIDE option has been run, as
appropriate.) And the last column, "run_value," is the value of
the setting currently in effect.
#>

#change FillFactor
$server.Configuration.FillFactor.ConfigValue = 60

#enable SQL Server Agent extended stored procedures
$server.Configuration.AgentXPsEnabled.ConfigValue = 1

#change minimum server memory to 500MB; MB is default
$server.Configuration.MinServerMemory.ConfigValue = 500

$server.Configuration.Alter()

#confirm changes
$server.Configuration.Properties |
Select DisplayName, ConfigValue |
Format-Table -AutoSize

Chapter 2

57

#change authentication mode
$server.Settings.LoginMode = [Microsoft.SqlServer.Management.Smo.
ServerLoginMode]::Mixed
$server.Alter()

#confirm changes
$server.settings.LoginMode

4.	 Confirm the changes.

To confirm fill factor:

1.	 Go to Management Studio.

2.	 Connect to your instance.

3.	 Right-click on your instance and select Properties.

4.	 Go to Database Settings, and check whether your fill factor value has changed.

A side effect of enabling SQL Server Agent extended stored procedures is enabling SQL
Server Agent. To confirm SQL Server Agent has been enabled:

1.	 Go to Management Studio.

2.	 Connect to your instance.

SQL Server and PowerShell Basic Tasks

58

3.	 Visually check whether SQL Server Agent for the instance you modified is now running.

To confirm Minimum server memory:

1.	 Go to Management Studio.

2.	 Right-click on your instance and select Properties.

3.	 Go to Memory and check that the value has changed to what you set it to.

To confirm authentication mode:

1.	 Go to Management Studio.

2.	 Connect to your instance.

Chapter 2

59

3.	 Right-click on your instance and select Properties.

4.	 Go to Security and check that the instance is now SQL Server and Windows
Authentication mode.

How it works...
Depending on what server properties you need to change, you may need to determine
which of the following classes you may need to access: Settings, UserOptions,
or Configuration.

Once you have determined which class and property you want to change, you can change the
values and invoke the Alter method:

#to make Configuration changes permanent
$server.Configuration.Alter()

#to make Settings changes permanent
$server.Alter()

SQL Server and PowerShell Basic Tasks

60

There's more...
When you run sp_configure, you will see a result that shows both run_value and config_value
as follows:

There is often confusion between run_value and config_value. config_value is what value the
setting is set to. run_value is what SQL Server is currently using. Sometimes, a new value may
be set (config_value), but it isn't used by SQL Server until the instance is restarted.

See also
ff The Listing SQL Server configuration settings recipe

Searching for database objects
In this recipe, we will search for database objects based on a search string by using PowerShell.

Getting ready
We will use AdventureWorks2008R2, in this exercise, and will look for SQL Server objects
with the word "Product" in their names.

Chapter 2

61

To get an idea of what are expecting to retrieve, run the following script in SQL Server
Management Studio:

USE AdventureWorks2008R2
GO
SELECT
 *
FROM
 sys.objects
WHERE
 name LIKE '%Product%'
 -- filter table level objects only
 AND [type] NOT IN ('C', 'D', 'PK', 'F')
ORDER BY
 [type]

This will get you 23 results. Remember this number.

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it. Note that the following script will work only with
PowerShell V3, because of the simplified Where cmdlet usage. If you want to use
this in PowerShell V2, replace the Where syntax with the V2 variation.

$databaseName = "AdventureWorks2008R2"
$db = $server.Databases[$databaseName]

#what keyword are we looking for?
$searchString = "Product"

#create empty array, we will store results here
$results = @()

SQL Server and PowerShell Basic Tasks

62

#now we will loop through all database SMO
#properties and look of objects that match
#the search string
#note we are explicitly excluding Federations, because
#this throws an error
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*" |
ForEach-Object {
 $type = $_.Name
 $db.$type |
 Where Name -Like "*$searchstring*" |
 ForEach-Object {
 $result = New-Object -Type PSObject -Prop @{
 "ObjectType"=$type.Replace("Microsoft.
SqlServer.Management.Smo.", "")
 "ObjectName"=$_.Name
 }
 $results += $result
 }

}

#display results
$results

#export results to csv file
$file = "C:\Temp\SearchResults.csv"
$results | Export-Csv -Path $file -NoTypeInformation

#display file contents
notepad $file

Chapter 2

63

Your results will look like this:

How it works...
After creating our usual SMO Server object, we create an SMO database handle to our
AdventureWorks2008R2 database.

$databasename = "AdventureWorks2008R2"
$db = $server.Databases[$databasename]

We also define our search string. Our goal is to get all database objects that have the word
"Product" in their names:

#what keyword are we looking for?
$searchString = "Product"

We also create an empty array, where we can save our search results as records. This will
enable us to display our final results in a tabular fashion when we're done with our iteration.

$results = @()

SQL Server and PowerShell Basic Tasks

64

We will then go through all the database-related SMO properties and look for objects
that contain the keyword we're looking for. Note that the following script will work only
with PowerShell V3, because of the simplified Where cmdlet usage. If you want to use
this in PowerShell V2, replace the Where syntax with the V2 variation.

#now we will loop through all database SMO
#properties and look of objects that match
#the search string
#note we are explicitly excluding Federations, because
#this throws an error
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*" |
ForEach-Object {
 $type = $_.Name
 $db.$type |
 Where Name -Like "*$searchstring*" |
 ForEach-Object {
 $result = New-Object -Type PSObject -Prop @{
 "ObjectType"=$type.Replace("Microsoft.SqlServer.
Management.Smo.", "")
 "ObjectName"=$_.Name
 }
 $results += $result
 }
}

In our loop, we have one long line that parses and creates our result.

The first part inspects each property and checks whether the name contains our search string.

$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*" |
ForEach-Object {
 $type = $_.Name
 $db.$type |
 Where Name -Like "*$searchstring*" |
 ForEach-Object {
 $result = New-Object -Type PSObject -Prop @{
 "ObjectType"=$type.Replace("Microsoft.SqlServer.
Management.Smo.", "")
 "ObjectName"=$_.Name
 }

Chapter 2

65

 $results += $result
 }
}

Note that we have two conditions that we pass in the outer Where-Object cmdlets (here
simplified to Where usage, which is supported only in PowerShell V3), as follows:

ff Where Definition -Like "*Smo*", because we are only looking for SMO
properties

ff Where Definition -NotLike "*Federation*", because when you access
$db.Federations, an exception is thrown

The second part builds a new row for the result with two columns: ObjectType and
ObjectName. This new result is of type PSObject. Once constructed, we store this in our
$results array. We also strip out the substring Microsoft.SqlServer.Management.
Smo from the resulting object types, for brevity.

$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*" |
ForEach-Object {
 $type = $_.Name
 $db.$type |
 Where Name -Like "*$searchstring*" |
 ForEach-Object {
 $result = New-Object -Type PSObject -Prop @{
 "ObjectType"=$type.Replace("Microsoft.SqlServer.
Management.Smo.", "")
 "ObjectName"=$_.Name
 }
 $results += $result
 }
}

Lastly, we export our results to a CSV file, using the Export-Csv cmdlet, and display
in notepad:

#export results to csv file
$file = "C:\Temp\SearchResults.csv"
$results | Export-Csv -Path $file -NoTypeInformation

#display file contents
notepad $file

SQL Server and PowerShell Basic Tasks

66

When you inspect your results, however, you will notice two extra objects that were not captured
in our T-SQL statement in the Getting ready section. If we compare the two approaches, our
PowerShell approach is more complete. In addition to the expected 23 results, PowerShell has
also captured:

ff Production—schema object

ff ProductDescriptionSchemaCollection—XmlSchemaCollection object

There's more...
Another way to iterate through the objects is by using the EnumObjects method of the SMO
database variable $db:

$searchString = "Product"

$db.EnumObjects() |
Where Name -Like "*$searchString*" |
Select DatabaseObjectTypes, Name |
Format-Table -AutoSize

Yes, there is still yet another alternative. This one is longer and less flexible, but it still gets you
what you need. You can look for objects that match the search string by going through the $db
object properties one by one, like this:

#long version is to enumerate explicitly each object type
$db.Tables | Where Name -Like "*$searchstring*"
$db.StoredProcedures | Where Name -Like "*$searchstring*"
$db.Triggers | Where Name -Like "*$searchstring*"
$db.UserDefinedFunctions | Where Name -Like "*$searchstring*"

#etc

This is useful, and will be faster, if you know exactly what type of object you are looking for.

See also
ff The Exploring SMO Server objects recipe in Chapter 1

Chapter 2

67

Creating a database
This recipe walks through creating a database with default properties using PowerShell.

Getting ready
In this example, we are going to create a database called TestDB, and we assume that this
database does not yet exist in your instance.

For your reference, the equivalent T-SQL code for this task is:

CREATE DATABASE TestDB

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:

#database TestDB with default settings
#assumption is that this database does not yet exist
$dbName = "TestDB"
$db = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Database($server, $dbName)
$db.Create()

#to confirm, list databases in your instance
$server.Databases |
Select Name, Status, Owner, CreateDate

SQL Server and PowerShell Basic Tasks

68

How it works...
There are two key steps to creating a database using SMO and PowerShell: creating an SMO
Server object and creating an SMO Database object.

$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

$dbName = "TestDB"
$db = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Database($server, $dbName)

The SMO Database constructor requires both the SMO Server handle and a database object.
The final action is to call the database object's Create method:

$db.Create()

Many SMO objects are consistent with the methods. You will see the Create method again in
several recipes in this chapter.

Altering database properties
This recipe shows you how to change database properties, using SMO and PowerShell.

Getting ready
Create a database called TestDB by following the steps in the Creating a database recipe.

Using TestDB, we will:

ff Change ANSI NULLS Enabled to False

ff Change ANSI PADDING Enabled to False

ff Restrict user access to RESTRICTED_USER

ff Set the database to Read Only

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

Chapter 2

69

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run
#database
$dbName = "TestDB"

#we are going to assume db exists
$db = $server.Databases[$dbName]

#DatabaseOptions
#change ANSI NULLS and ANSI PADDING
$db.DatabaseOptions.AnsiNullsEnabled = $false
$db.DatabaseOptions.AnsiPaddingEnabled = $false

#Change database access
#DatabaseUserAccess enum values: multiple, restricted, single
$db.DatabaseOptions.UserAccess = [Microsoft.SqlServer.Management.
Smo.DatabaseUserAccess]::Restricted

$db.Alter()

#some options are not available through the
#DatabaseOptions property
#so we will need to access the database object directly

#change compatiblity level to SQL Server 2005
#available CompatibilityLevel values are from
#Version 6.5 ('Version65') all the way to SQL
#Server 2012 ('Version110')
#however Version80 is not a valid compatibility option
#for SQL Server 2012
$db.AutoUpdateStatisticsEnabled = $true
$db.CompatibilityLevel = [Microsoft.SqlServer.Management.Smo.
CompatibilityLevel]::Version90
$db.Alter()

#set to readonly
$db.DatabaseOptions.ReadOnly = $true
$db.Alter()

SQL Server and PowerShell Basic Tasks

70

4.	 Confirm the changes.

To start confirming:

1.	 Go to Management Studio.

2.	 Connect to your instance.

You will notice right away in Object Explorer that your database is grayed out and
that its status has changed to (Restricted User / Read-Only).

To confirm ANSI NULLS, ANSI PADDING, and Compatibility Level:

3.	 Right-click on the TestDB database and select Properties.

4.	 Go to the Options tab, and check whether the respective options have
been changed:

Chapter 2

71

How it works...
To alter database properties, you will need to create an SMO handle to your database:

#we are going to assume db exists
$db = $server.Databases[$dbName]

After this, you will need to investigate which of the properties contains the setting you want to
change. For example, ANSI NULLS, ANSI WARNINGS, database access restriction options, and
Read Only are available through the DatabaseOptions property of your database object:

#DatabaseOptions
#change ANSI NULLS and ANSI PADDING
$db.DatabaseOptions.AnsiNullsEnabled = $false
$db.DatabaseOptions.AnsiPaddingEnabled = $false

#Change database access
#DatabaseUserAccess enum values: multiple, restricted, single
$db.DatabaseOptions.UserAccess = [Microsoft.SqlServer.Management.Smo.
DatabaseUserAccess]::Restricted

#set to readonly
$db.DatabaseOptions.ReadOnly = $true

AutoUpdateStatisticsEnabled and CompatibilityLevel are their own properties,
directly accessible from the $db object:

$db.AutoUpdateStatisticsEnabled = $true
$db.CompatibilityLevel = [Microsoft.SqlServer.Management.Smo.
CompatibilityLevel]::Version90

Note that for SQL Server 2012, the earliest version you can set the compatibility level to is
SQL Server 2005 (Version 90).

Once you've set the new values, you can persist the changes by invoking the Alter method
of your database object:

$db.Alter()

Finding exactly which property the settings you are looking for reside in is half the battle, so it's
a great idea to familiarize yourself with the properties of the object you are changing. Technet
and MSDN are great resources, as are books and numerous articles and blog posts. However,
remember there is help at your fingertips. Remember that the Get-Member cmdlet is your
friend. You can invoke the Get-Member cmdlet as follows:

$db | Get-Member

SQL Server and PowerShell Basic Tasks

72

See also
ff The Changing SQL Server instance configurations recipe

Dropping a database
This recipe shows how you can drop a database, using PowerShell and SMO.

Getting ready
This task assumes you have created a database called TestDB. If you haven't, create one by
following the steps in the Creating a database recipe.

How to do it...
The following are the steps to drop your TestDB database:

1.	 Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:

$dbName = "TestDB"

#need to check if database exists, and if it does, drop it
$db = $server.Databases[$dbName]
if ($db)
{
 #we will use KillDatabase instead of Drop
 #Kill database will drop active connections before
 #dropping the database
 $server.KillDatabase($dbName)
}

Chapter 2

73

How it works...
To drop an SMO server or database object, you can simply invoke the Drop method. However,
if you have ever tried dropping a database before, you might have already experienced being
blocked by active connections to that database. For this reason, we chose the KillDatabase
method, which will kill active connections before dropping the database. This option is also
available in Management Studio when you drop a database from Object Explorer. When you
right-click on a database, the Delete Object window will appear. At the bottom of the window
you will find a checkbox called Close existing connections, which will do the job.

Changing a database owner
This recipe shows how to programmatically change a SQL Server database owner.

Getting ready
This task assumes you have created a database called TestDB and that a Windows account
QUERYWORKS\aterra. QUERYWORKS\aterra has been created in your test VM.

See Appendix D, Creating a SQL Server VM.

If you don't already have one, create a TestDB database by following the steps the Creating
a database recipe.

SQL Server and PowerShell Basic Tasks

74

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:
#create database handle
$dbName = "TestDB"
$db = $server.Databases[$dbName]

#display current owner
$db.Owner

#change owner
#SetOwner requires two parameters:
#loginName and overrideIfAlreadyUser
$db.SetOwner("QUERYWORKS\aterra", $true)
#refresh db
$db.Refresh()

#check Owner value
$db.Owner

4.	 Do a visual check:

1.	 Open Management Studio.

2.	 Locate the AdventureWorks2008R2 database.

3.	 Right-click and go to Properties.

4.	 Select Options.

Chapter 2

75

How it works...
Changing the database owner is a short and straightforward task in PowerShell. First, you
need to create a database handle.

The only other action required is invoking the SetOwner method of the Microsoft.
SqlServer.Management.Smo.Database class, which requires two parameters:

ff LoginName

ff OverrideIfAlreadyUser

The OverrideIfAlreadyUser option can be set to either true or false. If set to true,
it means that the currently logged-in user already exists as a user in the target database, and
that user is dropped and re-added as owner. If set to false and the logged-in user is already
mapped to that database, the SetOwner method will produce an error.

See also
ff The Altering database properties recipe

Creating a table
This recipe shows how to create a table using PowerShell and SMO.

Getting ready
We will use the AdventureWorks2008R2 database to create a table named Student,
which has five columns. To give you a better idea of what we are trying to achieve, the
equivalent T-SQL script needed to create this table is as follows:

USE AdventureWorks2008R2
GO
CREATE TABLE [dbo].[Student](

SQL Server and PowerShell Basic Tasks

76

[StudentID] [INT] IDENTITY(1,1) NOT NULL,
[FName] [VARCHAR](50) NULL,
[LName] [VARCHAR](50) NOT NULL,
[DateOfBirth] [DATETIME] NULL,
[Age] AS (DATEPART(YEAR,GETDATE())-DATEPART(YEAR,[DateOfBirth])),
CONSTRAINT [PK_Student_StudentID] PRIMARY KEY CLUSTERED
(
 [StudentID] ASC
)

GO

How to do it...
Let's create the Student table using PowerShell:

1.	 Open the PowerShell console by going to Start | Accessories | Windows PowerShell
| Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Next, add code to set up the database and table names and to drop the table if it
already does exist:
$dbName = "AdventureWorks2008R2"
$tableName = "Student"
$db = $server.Databases[$dbName]
$table = $db.Tables[$tableName]

#if table exists drop
if($table)
{
 $table.Drop()
}

4.	 Add the following script to create the table, and run it:
#table class on MSDN
#http://msdn.microsoft.com/en-us/library/ms220470.aspx

Chapter 2

77

$table = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Table -ArgumentList $db, $tableName

#column class on MSDN
#http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.
management.smo.column.aspx
#column 1
$col1Name = "StudentID"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::Int;
$col1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Column -ArgumentList $table, $col1Name, $type
$col1.Nullable = $false
$col1.Identity = $true
$col1.IdentitySeed = 1
$col1.IdentityIncrement = 1
$table.Columns.Add($col1)

#column 2 - nullable
$col2Name = "FName"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::VarChar(50)
$col2 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Column -ArgumentList $table, $col2Name, $type
$col2.Nullable = $true
$table.Columns.Add($col2)

#column 3 - not nullable, with default value
$col3Name = "LName"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::VarChar(50)
$col3 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Column -ArgumentList $table, $col3Name, $type
$col3.Nullable = $false
$col3.AddDefaultConstraint("DF_Student_LName").Text = "'Doe'"

$table.Columns.Add($col3)

#column 4 - nullable, with default value
$col4Name = "DateOfBirth"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::DateTime;
$col4 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Column -ArgumentList $table, $col4Name, $type
$col4.Nullable = $true
$col4.AddDefaultConstraint("DF_Student_DateOfBirth").Text =
"'1800-00-00'"
$table.Columns.Add($col4)

SQL Server and PowerShell Basic Tasks

78

#column 5
$col5Name = "Age"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::Int;
$col5 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Column -ArgumentList $table, $col5Name, $type
$col5.Nullable = $false
$col5.Computed = $true
$col5.ComputedText = "YEAR(GETDATE()) - YEAR(DateOfBirth)";
$table.Columns.Add($col5)

$table.Create()

5.	 Make StudentID the primary key, as follows:
###
#make StudentID a clustered PK
###
#note this is just a "placeholder" right now for PK
#no columns are added in this step
$PK=New-Object-TypeNameMicrosoft.SqlServer.Management.SMO.Index
-ArgumentList$table,"PK_Student_StudentID"
$PK.IsClustered =$true
$PK.IndexKeyType =[Microsoft.SqlServer.Management.SMO.
IndexKeyType]::DriPrimaryKey

#identify columns part of the PK
$PKcol=New-Object-TypeNameMicrosoft.SqlServer.Management.SMO.
IndexedColumn-ArgumentList$PK,$col1Name
$PK.IndexedColumns.Add($PKcol)
$PK.Create()

6.	 Do a visual check to see whether the table has been created with the correct
columns and constraints:

1.	 Open Management Studio.

2.	 Go to the AdventureWorks2008R2 database and expand Tables.

3.	 Expand Columns, Keys, Constraints, and Indexes.

Chapter 2

79

How it works...
To create a table, the first step is to create an SMO table object, thus:

$table = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Table -ArgumentList $db, $tableName

After this, all columns have to be defined one by one and added to the table before the Create
method of the Microsoft.SqlServer.Management.SMO.Table class is invoked.

Let's take this step by step. To create a column, we first need to identify the data type we are
storing in the column and the properties of that column.

Column data types in SMO are defined in Microsoft.SqlServer.Management.SMO.
DataType. Every T-SQL data type is pretty much represented in this enumeration. To use a
data type, the format should be as follows:

[Microsoft.SqlServer.Management.SMO.DataType]::DataType

To create a column, you will have to specify the table variable, the data type, and the
column name:

$col1Name = "StudentID"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::Int
$col1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Column -ArgumentList $table, $col1Name, $type

SQL Server and PowerShell Basic Tasks

80

Common column properties will now be accessible to your column variable. Some common
properties include:

ff Nullable

ff Computed

ff ComputedText

ff Default Constraint (by using the AddDefaultConstraint method)

For example:

#column 4 - nullable, with default value
$col4Name = "DateOfBirth"
$type = [Microsoft.SqlServer.Management.SMO.DataType]::DateTime;
$col4 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Column -ArgumentList $table, $col4Name, $type
$col4.Nullable = $true
$col4.AddDefaultConstraint("DF_Student_DateOfBirth").Text = "'1800-00-
00'"

There are additional properties that are exposed, depending on the data type you've chosen.
For example, [Microsoft.SqlServer.Management.SMO.DataType]::Int will allow
you to specify whether this is an identity and let you set seed and increment. [Microsoft.
SqlServer.Management.SMO.DataType]::Varchar will allow you to set length.

Once you have set the properties, you can add columns to your table, as follows:

$table.Columns.Add($col4)

When everything is set up, you can invoke the table's Create method:

$table.Create()

Now, to create a primary key, you will need to create two other SMO Objects. The first one is
the Index object. For this object, you can specify what type of index this is and whether it is
clustered or nonclustered:

$PK = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Index -ArgumentList $table, "PK_Student_StudentID"
$PK.IsClustered = $true
$PK.IndexKeyType = [Microsoft.SqlServer.Management.SMO.
IndexKeyType]::DriPrimaryKey

The second object, IndexedColumn, specifies what columns are part of the index.

#identify columns part of the PK
$PKcol = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
IndexedColumn -ArgumentList $PK, $col1Name

Chapter 2

81

If this column is an included column, simply set the IsIncluded property of the
IndexedColumn object to true.

Once you've created all index columns, you can add them to the Index and invoke the
Create method of the Index object:

$PK.IndexedColumns.Add($PKcol)
$PK.Create()

You must be thinking right now that what we've just gone over is a long-winded way to create
a table. And you're thinking right. It is a more verbose way to create a table. However, keep
in mind this is just one more way to get things done. When you need to create a table and if
T-SQL is a faster way to do it, go for it. However, knowing how to do it in PowerShell and SMO
is just one more tool in your arsenal for those scenarios where you might need to create the
tables dynamically or more flexibly—for example, if you need to import the definition stored in
Excel, CSV, or XML files from multiple users.

See also
ff The Creating an index recipe

ff Check out the complete list of SMO DataType classes from MSDN:
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.
management.smo.datatype.aspx

Creating a view
This recipe shows how to create a view using PowerShell and SMO.

Getting ready
We will use the Person.Person table in the AdventureWorks2008R2 database for
this recipe.

To give you an idea of what we are attempting to create in this recipe, this is the
T-SQL equivalent:

CREATE VIEW dbo.vwVCPerson
AS
SELECT
 TOP 100
 BusinessEntityID,
 LastName,
 FirstName

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx

SQL Server and PowerShell Basic Tasks

82

FROM
 Person.Person
WHERE
 PersonType = 'IN'
ORDER BY
 LastName
GO

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]
$viewName = "vwVCPerson"
$view = $db.Views[$viewName]

#if view exists, drop it
if ($view)
{
 $view.Drop()
}

$view = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
View -ArgumentList $db, $viewName, "dbo"

#TextMode = false meaning we are not
#going to explicitly write the CREATE VIEW header
$view.TextMode = $false
$view.TextBody = @"

Chapter 2

83

SELECT
 TOP 100
 BusinessEntityID,
 LastName,
 FirstName
FROM
 Person.Person
WHERE
 PersonType = 'IN'
ORDER BY
 LastName
"@

$view.Create()

4.	 Test the view from PowerShell by running the following code:
$result = Invoke-Sqlcmd `
-Query "SELECT * FROM vwVCPerson" `
-ServerInstance "$instanceName" `
-Database $dbName

$result | Format-Table -AutoSize

5.	 Do a visual check to see whether the view has been created. Open Management
Studio, go to the AdventureWorks2008R2 database, and expand Views.

SQL Server and PowerShell Basic Tasks

84

How it works...
To create a view using SMO and PowerShell, you first need to create an SMO View variable,
which requires three parameters: database handle, view name, and schema.

$view = New-Object -TypeName Microsoft.SqlServer.Management.SMO.View
-ArgumentList $db, $viewName, "dbo"

You can optionally set the view owner:

$view.Owner = "QUERYWORKS\aterra"

The crux of the view creation is with the view definition. You have the option here of setting
the TextMode property to either true or false.

$view.TextMode = $false
$view.TextBody = @"
SELECT
 TOP 100
 BusinessEntityID,
 LastName,
 FirstName
FROM
 Person.Person
WHERE
 PersonType = 'IN'
ORDER BY
 LastName
"@

If you set the TextMode property to false, it means you are letting SMO construct the view
header for you:

$view.TextMode = $false

If you set the TextMode property to true, it means you have to define the view's
TextHeader property:

$view.TextMode = $true
$view.TextHeader = "CREATE VIEW dbo.vwVCPerson AS "

When all the pieces are in place, you can invoke the view's Create method:

$view.Create()

Chapter 2

85

There's more...
When creating database objects such as views, stored procedures, or functions, you are
often required to write blocks of code for the object definition. Although you can technically
put all these in one line, it is best to put them in a multiline format for readability.

To embed these blocks of code in PowerShell, you will need to use a here-string.
A here-string starts with @" followed by nothing else, and is ended by "@, which
must be the first two character in its own line:

$view.TextBody = @"
SELECT
 TOP 100
 BusinessEntityID,
 LastName,
 FirstName
FROM
 Person.Person
WHERE
 PersonType = 'IN'
ORDER BY
 LastName
"@

This construction might remind you a little bit of a C-style comment, which starts with /* and
ends with */, albeit using different characters.

Creating a stored procedure
This recipe shows how to create an encrypted stored procedure using SMO and PowerShell.

Getting ready
The T-SQL equivalent of the encrypted stored procedure we are about to recreate in
PowerShell is as follows:

CREATE PROCEDURE [dbo].[uspGetPersonByLastName] @LastName [varchar]
(50)
WITH ENCRYPTION
AS

SQL Server and PowerShell Basic Tasks

86

SELECT
 TOP 10
 BusinessEntityID,
 LastName
FROM
 Person.Person
WHERE
 LastName = @LastName

How to do it...
Follow these steps to create the uspGetPersonByLastName stored procedure
using PowerShell:

1.	 Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]

#storedProcedure class on MSDN:
#http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.
management.smo.storedprocedure.aspx

$sprocName = "uspGetPersonByLastName"
$sproc = $db.StoredProcedures[$sprocName]
#if stored procedure exists, drop it
if ($sproc)
{
 $sproc.Drop()
}

Chapter 2

87

$sproc = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
StoredProcedure -ArgumentList $db, $sprocName

#TextMode = false means stored procedure header
#is not editable as text
#otherwise our text will contain the CREATE PROC block
$sproc.TextMode = $false
$sproc.IsEncrypted = $true

$paramtype = [Microsoft.SqlServer.Management.SMO.
Datatype]::VarChar(50);
$param = New-Object -TypeName Microsoft.SqlServer.Management.
SMO.StoredProcedureParameter -ArgumentList $sproc,"@
LastName",$paramtype
$sproc.Parameters.Add($param)

#Set the TextBody property to define the stored procedure.
$sproc.TextBody = @"
SELECT
 TOP 10
 BusinessEntityID,
 LastName
FROM
 Person.Person
WHERE
 LastName = @LastName
"@

Create the stored procedure on the instance of SQL Server.
$sproc.Create()

#if later on you need to change properties, can use the Alter
method

4.	 Do a visual check to see whether the stored procedure has been created.

1.	 Open Management Studio.

2.	 Go to the AdventureWorks2008R2 database.

SQL Server and PowerShell Basic Tasks

88

3.	 Expand Programmability | Stored Procedures.

4.	 Check that the stored procedure is there.

5.	 Test the stored procedure from PowerShell. In the same session, type the following
code and run it:

$lastName = "Abercrombie"
$result = Invoke-Sqlcmd `
-Query "EXEC uspGetPersonByLastName @LastName=`'$LastName`'" `
-ServerInstance "$instanceName" `
-Database $dbName

$result | Format-Table -AutoSize

How it works...
To create a stored procedure, you first need to initialize an SMO StoredProcedure object.
When creating this object, you need to pass the database handle and the stored procedure
name as parameters:

$sproc = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
StoredProcedure -ArgumentList $db, $sprocName

You can then set some properties of the stored procedure object, such as whether it's
encrypted or not:

$sproc.IsEncrypted = $true

Chapter 2

89

If you specify TextMode = true, you will need to create the stored procedure header yourself.
If you have parameters, these will have to be defined in your text header, for example:

$sproc.TextMode = $true
$sproc.TextHeader = @"
CREATE PROCEDURE [dbo].[uspGetPersonByLastName]
 @LastName [varchar](50)
AS
"@

Otherwise, if you set TextMode = $false, you are technically allowing PowerShell
to autogenerate this header for you, based on the other properties and parameters you
have set. You will also have to create the parameter objects one-by-one and add them
to the stored procedure.

$sproc.TextMode = $false

$paramtype = [Microsoft.SqlServer.Management.SMO.
Datatype]::VarChar(50);
$param = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
StoredProcedureParameter -ArgumentList $sproc,"@LastName",$paramtype
$sproc.Parameters.Add($param)

When creating the stored procedure, use a here-string as you set the definition of the
TextBody property of the stored procedure object:

$sproc.TextBody = @"
SELECT
 TOP 10
 BusinessEntityID,
 LastName
FROM
 Person.Person
WHERE
 LastName = @LastName
"@

Once the header, definition, and properties of the stored procedure are in place, you can
invoke the Create method, which sends the CREATEPROC statement to SQL Server and
creates the stored procedure.

Create the stored procedure on the instance of SQL Server.
$sproc.Create()

SQL Server and PowerShell Basic Tasks

90

Creating a trigger
This recipe demonstrates how to programmatically create a trigger in SQL Server using SMO
and PowerShell.

Getting ready
For this recipe, we will use the Person.Person table in the AdventureWorks2008R2
database. We will create a trivial AFTER trigger that merely displays values from the inserted
and deleted records upon firing.

The following is the T-SQL equivalent of what we are going to accomplish programmatically in
this section:

CREATE TRIGGER [Person].[tr_u_Person]
ON [Person].[Person]
AFTER UPDATE
AS

 SELECT
 GETDATE() AS UpdatedOn,
 SYSTEM_USER AS UpdatedBy,
 i.LastName AS NewLastName,
 i.FirstName AS NewFirstName,
 d.LastName AS OldLastName,
 d.FirstName AS OldFirstName
 FROM
 inserted i
 INNER JOIN deleted d
 ON i.BusinessEntityID = d.BusinessEntityID

How to do it...
Let's follow these steps to create an AFTER trigger in PowerShell:

1.	 Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"

Chapter 2

91

$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]
$tableName = "Person"
$schemaName = "Person"

#get a handle to the Person.Person table
$table = $db.Tables |
 Where Schema -Like "$schemaName" |
 Where Name -Like "$tableName"

$triggerName = "tr_u_Person";
#note here we need to check triggers attached to table
$trigger = $table.Triggers[$triggerName]

#if trigger exists, drop it
if ($trigger)
{
 $trigger.Drop()
}

$trigger = New-Object -TypeName Microsoft.SqlServer.Management.
SMO.Trigger -ArgumentList $table, $triggerName
$trigger.TextMode = $false

#this is just an update trigger
$trigger.Insert = $false
$trigger.Update = $true
$trigger.Delete = $false

#3 options for ActivationOrder: First, Last, None
$trigger.InsertOrder = [Microsoft.SqlServer.Management.SMO.Agent.
ActivationOrder]::None
$trigger.ImplementationType = [Microsoft.SqlServer.Management.SMO.
ImplementationType]::TransactSql

#simple example
$trigger.TextBody = @"
 SELECT
 GETDATE() AS UpdatedOn,
 SYSTEM_USER AS UpdatedBy,

SQL Server and PowerShell Basic Tasks

92

 i.LastName AS NewLastName,
 i.FirstName AS NewFirstName,
 d.LastName AS OldLastName,
 d.FirstName AS OldFirstName
 FROM
 inserted i
 INNER JOIN deleted d
 ON i.BusinessEntityID = d.BusinessEntityID

"@

$trigger.Create()

4.	 Do a visual check to see whether the stored procedure has been created. Open
Management Studio.

5.	 Test the stored procedure using PowerShell:

$firstName = "Frankk"
$result = Invoke-Sqlcmd `
-Query "UPDATE Person.Person SET FirstName = `'$firstName`' WHERE
BusinessEntityID = 2081 " `
-ServerInstance "$instanceName" `
-Database $dbName

$result | Format-Table –AutoSize

Your result should look similar to the following:

Chapter 2

93

How it works...
The code for this section is quite long, so we will break it down here.

To create a trigger, you need to create a reference to both the instance and the database
first. This is something we have done for most of the recipes in this chapter, in case you
have skipped the previous recipes.

A trigger is bound to a table or view. You will need to create a variable that points to the
table you want the trigger to attach to:

$tableName = "Person"
$schemaName = "Person"

$table = $db.Tables |
 Where Schema -Like "$schemaName" |
 Where Name -Like "$tableName"

For purposes of this recipe, if the trigger exists, we will drop it.

$trigger = $table.Triggers[$triggerName]

#if trigger exists, drop it
if ($trigger)
{
 $trigger.Drop()
}

Next, you need to create an SMO Trigger object:

$trigger = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Trigger -ArgumentList $table, $triggerName

Next, set the TextMode property. If set to true, it means you have to define the trigger
header text yourself. Otherwise, SMO will automatically generate it for you.

$trigger.TextMode = $false

You will also need to define what type of DML trigger this is. Your options are insert,
update, and/or delete triggers. Our example is just an update trigger.

#this is just an update trigger
$trigger.Insert = $false
$trigger.Update = $true
$trigger.Delete = $false

SQL Server and PowerShell Basic Tasks

94

You can also optionally define the trigger order. By default, there is no guarantee in what order
the triggers will be run by SQL Server, but you have the option to set it to First or Last. In
our example, we leave it at the default value, but we still explicitly define it for readability.

#3 options for ActivationOrder: First, Last, None
$trigger.InsertOrder = [Microsoft.SqlServer.Management.SMO.Agent.
ActivationOrder]::None

Our trigger is a Transact-SQL trigger. SQL Server SMO also supports SQLCLR triggers.

$trigger.ImplementationType = [Microsoft.SqlServer.Management.SMO.
ImplementationType]::TransactSql

To specify the trigger definition, you can set the value of the trigger's TextBody property. You
can use a here-string to assign the trigger code block to the TextBody property:

#simple example
$trigger.TextBody = @"
 SELECT
 GETDATE() AS UpdatedOn,
 SYSTEM_USER AS UpdatedBy,
 i.LastName AS NewLastName,
 i.FirstName AS NewFirstName,
 d.LastName AS OldLastName,
 d.FirstName AS OldFirstName
 FROM
 inserted i
 INNER JOIN deleted d
 ON i.BusinessEntityID = d.BusinessEntityID

"@

When ready, invoke the Create() method of the trigger.

$trigger.Create()

Chapter 2

95

Creating an index
This recipe demonstrates how to create a non-clustered index with an included column using
PowerShell and SMO.

Getting ready
We will use the Person.Person table in the AdventureWorks2008R2 database. We will
create a non-clustered index on FirstName, LastName, and include MiddleName. The
T-SQL equivalent of this task is:

CREATE NONCLUSTERED INDEX [idxLastNameFirstName]
ON [Person].[Person]
(
 [LastName] ASC,
 [FirstName] ASC
)
INCLUDE ([MiddleName])
GO

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]

$tableName = "Person"
$schemaName = "Person"

$table = $db.Tables |
 Where Schema -Like "$schemaName" |

SQL Server and PowerShell Basic Tasks

96

Where Name -Like "$tableName"

$indexName = "idxLastNameFirstName"
$index = $table.Indexes[$indexName]
#if stored procedure exists, drop it
if ($index)
{
 $index.Drop()
}

$index = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Index -ArgumentList $table, $indexName

#first index column, by default sorted ascending
$idxCol1 = New-Object -TypeName Microsoft.SqlServer.Management.
SMO.IndexedColumn -ArgumentList $index, "LastName", $false
$index.IndexedColumns.Add($idxCol1)

#second index column, by default sorted ascending
$idxCol2 = New-Object -TypeName Microsoft.SqlServer.Management.
SMO.IndexedColumn -ArgumentList $index, "FirstName", $false
$index.IndexedColumns.Add($idxCol2)

#included column
$inclCol1 = New-Object -TypeName Microsoft.SqlServer.Management.
SMO.IndexedColumn -ArgumentList $index, "MiddleName"
$inclCol1.IsIncluded = $true
$index.IndexedColumns.Add($inclCol1)

#Set the index properties.
<#
None - no constraint
DriPrimaryKey - primary key
DriUniqueKey - unique constraint
#>
$index.IndexKeyType = [Microsoft.SqlServer.Management.SMO.
IndexKeyType]::None
$index.IsClustered = $false
$index.FillFactor = 70

#Create the index on the instance of SQL Server.
$index.Create()

Chapter 2

97

4.	 Do a visual check to see whether the stored procedure has been created. Open
Management Studio:

How it works...
The first step to creating an index is to create an SMO index object, which requires both the
table/view handle and the index name:

$index = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
Index -ArgumentList $table, $indexName

The next step is to identify all index columns using the IndexedColumn property of the
Microsoft.SqlServer.Management.SMO.Index class:

#first index column
$idxCol1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
IndexedColumn -ArgumentList $index, "LastName", $false; #sort asc
$index.IndexedColumns.Add($idxCol1)

#second index column
$idxCol2 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
IndexedColumn -ArgumentList $index, "FirstName", $false; #sort asc
$index.IndexedColumns.Add($idxCol2)

Optionally, you can add included columns, in other words, columns that "tag along" with the
index but are not part of the indexed columns:

#included column
$inclCol1 = New-Object -TypeName Microsoft.SqlServer.Management.SMO.
IndexedColumn -ArgumentList $index, "MiddleName"
$inclCol1.IsIncluded = $true
$index.IndexedColumns.Add($inclCol1)

SQL Server and PowerShell Basic Tasks

98

The type of the index can be specified using the IndexKeyType property of the Microsoft.
SqlServer.Management.SMO.IndexedColumn class, which accepts three possible values:

ff None: Non-unique

ff DriPrimaryKey: Primary key

ff DriUniqueKey: Unique key

Additional properties can also be set, including FillFactor, and whether this key is
clustered or not:

$index.IndexKeyType = [Microsoft.SqlServer.Management.SMO.
IndexKeyType]::None
$index.IsClustered = $false
$index.FillFactor = 70

When all properties are set, invoke the Create method of the SMO index object.

#Create the index on the instance of SQL Server.
$index.Create()

There's more...
The SMO Index object also supports different kinds of indexes:

Index Type What to set
Filtered HasFilter

FilterDefinition

FullText IsFullTextKey = $true
XML IsXMLIndex = $true
Spatial IsSpatialIndex = $true

To get more information about index options, check out the MSDN documentation on
SMO indexes:

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.
management.smo.index.aspx

See also
ff The Creating a table recipe

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx

Chapter 2

99

Executing a query / SQL script
This recipe shows how you can execute either a hardcoded query or a SQL script,
from PowerShell.

Getting ready
Create a file in your C:\Temp folder called SampleScript.sql. This should contain:

SELECT *
FROM Person.Person

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:

$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]

#execute a passthrough query, and export to a CSV file
Invoke-Sqlcmd `
-Query "SELECT * FROM Person.Person" `
-ServerInstance "$instanceName" `
-Database $dbName |
Export-Csv -LiteralPath "C:\Temp\ResultsFromPassThrough.csv" `
-NoTypeInformation

#execute the SampleScript.sql, and display results to screen
Invoke-SqlCmd `
-InputFile "C:\Temp\SampleScript.sql" `
-ServerInstance "$instanceName" `
-Database $dbName |
Select FirstName, LastName, ModifiedDate |
Format-Table

SQL Server and PowerShell Basic Tasks

100

How it works...
Start warming up to the Invoke-Sqlcmd cmdlet. We will be using it a lot in this book.

As the name suggests, this cmdlet allows you to run T-SQL code or scripts and commands
supported by the SQLCMD utility. It also allows you to run XQuery code. Invoke-Sqlcmd is
your all-purpose SQL utility cmdlet.

To get more information about Invoke-Sqlcmd, use the Get-Help cmdlet

Get-Help Invoke-Sqlcmd -Full

In this recipe, we looked at two ways of using Invoke-Sqlcmd. The first is by specifying a
query to run. For this, you should use the –Query option:

#execute a passthrough query, and export to a CSV file
Invoke-Sqlcmd `
-Query "SELECT * FROM Person.Person" `
-ServerInstance "$instanceName" `
-Database $dbName |
Export-Csv -LiteralPath "C:\Temp\ResultsFromPassThrough.csv" `
-NoTypeInformation

For the second way, which requires running a SQL Script, you need to specify the
–InputFile switch:

#execute the SampleScript.sql, and display results to screen
Invoke-SqlCmd `
-InputFile "C:\Temp\SampleScript.sql" `
-ServerInstance "$instanceName" `
-Database $dbName |
Select FirstName, LastName, ModifiedDate |
Format-Table

Performing bulk export using Invoke-Sqlcmd
This recipe demonstrates how to export contents of a table to a CSV file using PowerShell and
the Invoke-Sqlcmd cmdlet.

Getting ready
Make sure you have access to the AdventureWorks2008R2 database. We will use the
Person.Person table.

Create a C:\Temp folder, if you don't already have one on your system.

Chapter 2

101

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Import the SQLPS module, and create a new SMO Server object:
#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
$instanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SqlServer.Management.Smo.
Server -ArgumentList $instanceName

3.	 Add the following script and run it:

#database handle
$dbName = "AdventureWorks2008R2"
$db = $server.Databases[$dbName]

#export file name
$exportfile = "C:\Temp\Person_Person.csv"

$query = @"
SELECT
 *
FROM
 Person.Person
"@
Invoke-Sqlcmd -Query $query -ServerInstance "$instanceName"
-Database $dbName |
Export-Csv -LiteralPath $exportfile -NoTypeInformation

How it works...
In this recipe, we export the results of a query to a CSV file. There are two core parts of the
export approach in this recipe.

The first part is executing the query, and for this, we use the Invoke-Sqlcmd cmdlet. We
specify the instance and database and send a query to SQL Server through this cmdlet:

Invoke-Sqlcmd -Query $query -ServerInstance "$instanceName" -Database
$dbName |
Export-Csv -LiteralPath $exportfile -NoTypeInformation

SQL Server and PowerShell Basic Tasks

102

The second part is piping the results to the Export-Csv cmdlet and specifying the file in
which the results are supposed to be stored. We also specify –NoTypeInformation, so
the cmdlet will omit the #TYPE .NET information type as the first line in the file:

Invoke-Sqlcmd -Query $query -ServerInstance "$instanceName" -Database
$dbName |
Export-Csv -LiteralPath $exportfile -NoTypeInformation

See also
ff The Executing a query / SQL script recipe

Performing bulk export using bcp
This recipe demonstrates how to export contents of a table to a CSV file using PowerShell
and bcp.

Getting ready
Make sure you have access to the AdventureWorks2008R2 database. We will export the
Person.Person table to a timestamped text file delimited by a pipe (|).

Create a C:\Temp\Exports folder, if you don't already have it on your system.

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Add the following script and run the following code:

$server = "KERRIGAN"
$table = "AdventureWorks2008R2.Person.Person"
$curdate = Get-Date -Format "yyyy-MM-dd_hmmtt"

$foldername = "C:\Temp\Exports\"

#format file name
$formatfilename = "$($table)_$($curdate).fmt"

#export file name
$exportfilename = "$($table)_$($curdate).csv"

$destination_exportfilename = "$($foldername)$($exportfilename)"

Chapter 2

103

$destination_formatfilename = "$($foldername)$($formatfilename)"

#command to generate format file
$cmdformatfile = "bcp $table format nul -T -c -t `"|`" -r `"\n`"
-f `"$($destination_formatfilename)`" -S$($server)"

#command to generate the export file
$cmdexport = "bcp $($table) out `"$($destination_exportfilename)`"
-S$($server) -T -f `"$destination_formatfilename`""

<#
$cmdformatfile gives you something like this:
bcp AdventureWorks2008R2.Person.Person format nul -T -c -t "|" -r
"\n" -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person_2011-
12-27_913PM.fmt" -S KERRIGAN

$cmdexport gives you something like this:
bcp AdventureWorks2008R2.Person.Person out "C:\Temp\Exports\
AdventureWorks2008R2.Person.Person_2011-12-27_913PM.csv" -S
KERRIGAN -T -c -f "C:\Temp\Exports\AdventureWorks2008R2.Per
son.Person_2011-12-27_913PM.fmt"
#>

#run the format file command
Invoke-Expression $cmdformatfile

#delay 1 sec, give server some time to generate the format file
#sleep helps us avoid race conditions
Start-Sleep -s 1

#run the export command
Invoke-Expression $cmdexport

#check the folder for generated file
explorer.exe $foldername

How it works...
Using SQL Server's bcp command is often the faster way to export records out of SQL Server.
It is also often preferred, because bcp offers flexibility in the export format.

The default export format of bcp uses a tab (\t) as a field delimiter and a carriage return
newline character (\r\n) as a row delimiter. If you want to change this, you will need to
create and use a format file that specifies how you want the export to be formatted.

SQL Server and PowerShell Basic Tasks

104

In our recipe, we first timestamp both the format file and then export file names.

$curdate = Get-Date -Format "yyyy-MM-dd_hmmtt"

$foldername = "C:\Temp\Exports\"

#format file name
$formatfilename = "$($table)_$($curdate).fmt"

#export file name
$exportfilename = "$($table)_$($curdate).csv"

$destination_exportfilename = "$($foldername)$($exportfilename)"
$destination_formatfilename = "$($foldername)$($formatfilename)"

We then construct the string that will generate the format file as follows:

#command to generate the export file
$cmdexport = "bcp $($table) out `"$($destination_exportfilename)`"
-S$($server) -T -f `"$destination_formatfilename`""

Note that because the actual command requires double quotes, when we construct the
command, we need to escape the double quote within the command with a backtick (`).

This command that is constructed should be similar to the following:

bcp AdventureWorks2008R2.Person.Person format nul -T -c -t "|" -r
"\n" -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person_2011-12-
27_913PM.fmt" -SKERRIGAN

We also construct the command that will export the records using the format file we
just created:

#command to generate the export file
$cmdexport = "bcp $($table) out `"$($destination_exportfilename)`"
-S$($server) -T -f `"$destination_formatfilename`""

This will give us something similar to the following:

bcp AdventureWorks2008R2.Person.Person out "C:\Temp\Exports\
AdventureWorks2008R2.Person.Person_2011-12-27_913PM.csv" -SKERRIGAN
-T -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person_2011-12-
27_913PM.fmt"

When the strings containing the commands are complete, we can execute the command using
the Invoke-Expression cmdlet. We run the format file creation command first, and then use
the Start-Sleep cmdlet to pause for 1 second, to ensure the format file has been created
first, before we invoke the command to do the actual export.

Chapter 2

105

#run the format file command
Invoke-Expression $cmdformatfile

#delay 1 sec, give server some time to generate
#the format file
#sleep helps us avoid race conditions
Start-Sleep -s 1

#run the export command
Invoke-Expression $cmdexport

If we don't wait, there will be a bigger chance for all the commands to be executed really fast,
and the command to export will run before the format file has been generated. This will lead
to an error, because the bcp command will not be able to find the format file.

Lastly, we just open up Windows Explorer, so we can inspect the files we generated.

#check the folder for generated file
explorer.exe $foldername

See also
ff The Performing bulk export using Invoke-Sqlcmd recipe

ff Read more about bcp format file options at http://msdn.microsoft.com/en-
us/library/ms191516.aspx.

Performing bulk import using BULK INSERT
This recipe will walk you through importing contents of a CSV file to SQL Server using PowerShell
and BULK INSERT.

Getting ready
To do a test import, we will first need to create a Person table similar to the Person.Person
table from the AdventureWorks2008R2 database, with some slight modifications.

We will create this in the Test schema, and we will remove some of the constraints and keep
this table as simple and independent as we can.

To create the table that we need for this exercise, open up Management Studio and run the
following code:

CREATE SCHEMA [Test]
GO

http://msdn.microsoft.com/en-us/library/ms191516.aspx

SQL Server and PowerShell Basic Tasks

106

CREATE TABLE [Test].[Person](
 [BusinessEntityID] [int] NOT NULL PRIMARY KEY,
 [PersonType] [nchar](2) NOT NULL,
 [NameStyle] [dbo].[NameStyle] NOT NULL,
 [Title] [nvarchar](8) NULL,
 [FirstName] [dbo].[Name] NOT NULL,
 [MiddleName] [dbo].[Name] NULL,
 [LastName] [dbo].[Name] NOT NULL,
 [Suffix] [nvarchar](10) NULL,
 [EmailPromotion] [int] NOT NULL,
 [AdditionalContactInfo] [xml] NULL,
 [Demographics] [xml] NULL,
 [rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
 [ModifiedDate] [datetime] NOT NULL
)

GO

For this recipe, we will import a file called AdventureWorks2008R2.Person.Person.csv,
which is provided with the downloadable materials from the Packt site. Save this in the folder
C:\Temp\Exports.

Alternatively, create a CSV file, as mentioned in the Performing bulk export using bcp recipe,
and replace the filename reference in this recipe with the filename you generate.

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Let's add some helper functions first. Type the following and execute it:
Import-Module SQLPS -DisableNameChecking

function Import-Person {
<#
.SYNOPSIS
 Very simple function to get number
 of records in Test.Person
.NOTES
 Author : Donabel Santos
.LINK
 http://www.sqlmusings.com
#>
param([string]$instanceName,[string]$dbName)

Chapter 2

107

$query = @"
TRUNCATE TABLE Test.Person
GO
BULK INSERT AdventureWorks2008R2.Test.Person
 FROM 'C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv'
 WITH
 (
 FIELDTERMINATOR ='|',
 ROWTERMINATOR ='\n'
)
SELECT COUNT(*) AS NumRecords
FROM AdventureWorks2008R2.Test.Person
"@;

#check number of records
Invoke-Sqlcmd -Query $query `
-ServerInstance "$instanceName" `
-Database $dbName
}

3.	 Now let's invoke the function in the same session, as follows:

$instanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"
Import-Person $instanceName $dbName

How it works...
Importing records from a CSV or text file into a SQL Server table using the BULK INSERT
command will require constructing the BULK INSERT T-SQL statement and executing this
statement using the Invoke-Sqlcmd cmdlet:

Invoke-Sqlcmd -Query $query `
-ServerInstance "$instanceName" `
-Database $dbName

However, we have done things a little bit differently than in our previous recipes. In this recipe,
we first created a function that encapsulates all the core import tasks.

To create a function, you first need to create a function header:

function Import-Person {

The function header starts with the keyword function and is then followed by the function
name in the format verb-noun. The body of the function is encapsulated by opening and
closing curly braces { }.

SQL Server and PowerShell Basic Tasks

108

Right after the function header, we also create a comment-based help header comment.

<#
.SYNOPSIS
 Very simple function to get number   of records in Test.Person
.NOTES
 Author : Donabel Santos
.LINK
 http://www.sqlmusings.com
#>

Block comments in PowerShell start with <# and end with #>. In addition, this is a special
type of block comment that allows this function's comments to be displayed in a Get-Help
cmdlet. We now type:

Get-Help Import-Person

This will provide output similar to the help you get for any other cmdlet:

After the function header and comment come the parameters. Our Import-Person function
accepts two parameters: instance name and database name.

param([string]$instanceName,[string]$dbName)

Chapter 2

109

Following our parameter definition is the function definition. We start by creating a here-string,
which contains our T-SQL statement:

$query = @"
TRUNCATE TABLE Test.Person
GO
BULK INSERT AdventureWorks2008R2.Test.Person
 FROM 'C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv'
 WITH
 (
 FIELDTERMINATOR ='|',
 ROWTERMINATOR ='\n'
)
SELECT COUNT(*) AS NumRecords
FROM AdventureWorks2008R2.Test.Person
"@;

After our query is constructed, we pass it to the Invoke-Sqlcmd cmdlet, which in turn sends
and executes it in our SQL Server instance.

Invoke-Sqlcmd -Query $query `
-ServerInstance "$instanceName" `
-Database $dbName

Functions in PowerShell are local-scoped by default, but when run through the ISE maintain
a global scope. In our recipe, once you run the first part of the script that has the function
definition, this function can be invoked at any time in the current session. We can see that
the function simplifies importing the records and all that we need is the instance name, the
database name, and the Import-Person function.

$instanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"
Import-Person $instanceName $dbName

If you are using the shell and you want this function to persist globally across different scopes,
save the script as a .ps1 file and dot source it. Another way is to prepend the function name
with global:

function global:Import-Person {

See also
ff The Executing a query / SQL script recipe

ff The Performing bulk import using bcp recipe

SQL Server and PowerShell Basic Tasks

110

Performing bulk import using bcp
This recipe will walk you through the process of importing the contents of a CSV file to SQL
Server using PowerShell and bcp.

Getting ready
To do a test import, let's first create a Person table similar to the Person.Person table from
the AdventureWorks2008R2 database, with some slight modifications. We will create this in
the Test schema, and we will remove some of the constraints and keep this table as simple
and independent as we can.

If Test.Person does not yet exist in your environment, let's create it. Open up Management
Studio, and run the following code:

CREATE SCHEMA [Test]
GO
CREATE TABLE [Test].[Person](
 [BusinessEntityID] [int] NOT NULL PRIMARY KEY,
 [PersonType] [nchar](2) NOT NULL,
 [NameStyle] [dbo].[NameStyle] NOT NULL,
 [Title] [nvarchar](8) NULL,
 [FirstName] [dbo].[Name] NOT NULL,
 [MiddleName] [dbo].[Name] NULL,
 [LastName] [dbo].[Name] NOT NULL,
 [Suffix] [nvarchar](10) NULL,
 [EmailPromotion] [int] NOT NULL,
 [AdditionalContactInfo] [xml] NULL,
 [Demographics] [xml] NULL,
 [rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
 [ModifiedDate] [datetime] NOT NULL
)

GO

How to do it...
1.	 Open the PowerShell console by going to Start | Accessories | Windows

PowerShell | Windows PowerShell ISE.

2.	 Let's add some helper functions first. Type the following and then run it:
Import-Module SQLPS -DisableNameChecking
$instanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"

Chapter 2

111

function Truncate-Table {
<#
.SYNOPSIS
 Very simple function to truncate
 records from Test.Person
.NOTES
 Author : Donabel Santos
.LINK
 http://www.sqlmusings.com
#>
param([string]$instanceName,[string]$dbName)

$query = @"
TRUNCATE TABLE Test.Person
"@

#check number of records
Invoke-Sqlcmd -Query $query `
-ServerInstance $instanceName `
-Database $dbName
}

function Get-PersonCount {
<#
.SYNOPSIS
 Very simple function to get number
 of records in Test.Person
.NOTES
 Author : Donabel Santos
.LINK
 http://www.sqlmusings.com
#>
param([string]$instanceName,[string]$dbName)
$query = @"
SELECT COUNT(*) AS NumRecords
FROM Test.Person
"@

#check number of records
Invoke-Sqlcmd -Query $query `
-ServerInstance $instanceName `
-Database $dbName
}

SQL Server and PowerShell Basic Tasks

112

3.	 Add the following script and run it:

#let's clean up the Test.Person table first
Truncate-Table $instanceName $dbName

$server = "KERRIGAN"
$table = "AdventureWorks2008R2.Test.Person"
$importfile = "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.
csv"

#command to import from csv
$cmdimport = "bcp $($table) in `"$($importfile)`" -S$server -T -c
-t `"|`" -r `"\n`" "

<#
$cmdimport gives you something like this:
bcp AdventureWorks2008R2.Test.Person in "C:\Temp\Exports\
AdventureWorks2008R2.Person.Person.csv" –SKERRIGAN -T -c -t "|" -r
"\n"
#>

#run the import command
Invoke-Expression $cmdimport

#delay 1 sec, give server some time to import records
#sleep helps us avoid race conditions
Start-Sleep -s 2

Get-PersonCount $instanceName $dbName

How it works...
Performing a bulk import using bcp is a straightforward task—we need to use the
Invoke-Expression cmdlet and pass in the bcp command. In this recipe, however, we
have cleaned up our script a little bit and have started off with a couple of helper functions.

The first helper function, Truncate-Table, is a simple helper function that truncates
the Test.Person table to which we want to import the records. This function passes
the TRUNCATE TABLE command to SQL Server using the Invoke-Sqlcmd cmdlet.
To use this function, simply call:

Truncate-Table $instanceName $dbName

Chapter 2

113

The second helper function, Get-PersonCount, simply returns a count of the records that
have been imported into the Test.Person table. This also uses the Invoke-Sqlcmd
cmdlet. To invoke the function, use the following code:

Get-PersonCount $instanceName $dbName

The core of this recipe is with the construction of the bcp import command:

$server = "KERRIGAN"
$table = "AdventureWorks2008R2.Test.Person"
$importfile = "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv"

#command to import from csv
$cmdimport = "bcp " + $table + " in " + '"' + $importfile + '"' + " -S
$server -T -c -t `"|`" -r `"\n`" "

This will give us the bcp command that points to the import file; it specifies the pipe as the
field delimiter and newline as the row delimiter:

bcp AdventureWorks2008R2.Test.Person in "C:\Temp\Exports\
AdventureWorks2008R2.Person.Person.csv" -T -c -t "|" -r "\n"

Once this command is constructed, we just need to pass it to the Invoke-Sqlcmd expression:

Invoke-Expression $cmdimport

We also added a little bit of delay here using the Start-Sleep cmdlet, with a sleep interval
of 2 seconds, to allow INSERT to happen before we count the records. This is a very simplistic
way to avoid race conditions, but for our purposes in this recipe it is sufficient.

See also
ff The Performing bulk import using BULK INSERT recipe

ff The Performing bulk export using bcp recipe

