Getting Started
with SQL Server
and PowerShell

In this chapter, we will cover:

» Working with the sample code

Exploring the SQL Server PowerShell hierarchy

v

» Installing SMO

» Loading SMO assemblies

» Discovering SQL-related cmdlets and modules
» Creating a SQL Server instance object

» Exploring SMO Server objects

Introduction

PowerShell is an administrative tool that has both shell and scripting capabilities that can
leverage Windows Management Instrumentation (WMI), COM components, and .NET libraries.
PowerShell is becoming more prominent with each generation of Microsoft products. Support
for it is being bundled, and improved, in a number of new and upcoming Microsoft product
releases. Windows Server, Exchange, ActiveDirectory, SharePoint, and even SQL Server, have

all shipped with added PowerShell support and cmdlets. Even vendors such as VMWare, Citrix,
Cisco, and Quest, to name a few, have provided ways to allow their products to be accessible
via PowerShell.

Getting Started with SQL Server and PowerShell

What makes PowerShell tick? Every systems administrator probably knows the pain of
trying to integrate heterogeneous systems using some kind of scripting. Historically, the
solution involved some kind of VBScript, some good old batch files, maybe some C#
code, some Perl—you name it. Sysadmins either had to resort to duct taping different
languages together to get things to work the way they intended, or just did not bother
because of the complicated code.

This is where PowerShell comes in. One of the strongest points for PowerShell is that it
simplifies automation and integration between different Microsoft ecosystems. As most
products have support for PowerShell, getting one system to talk to another is just a matter
of discovering what cmdlets, functions, or modules need to be pulled into the script. Even if
the product does not have support yet for PowerShell, it most likely has .NET or COM support,
which PowerShell can easily use.

Notable PowerShell V3 features

Some of the notable features in the latest PowerShell version are:

» Workflows: PowerShell V3 introduces Windows PowerShell Workflow (PSWF),
which as stated in MSDN (http://msdn.microsoft.com/en-us/library/
jj134242.aspx):

helps automate the distribution, orchestration, and completion of
multi-computer tasks, freeing users and administrators to focus on
higher-level tasks.

PSWF leverages Windows Workflow Foundation 4.0 for the declarative framework,
but using familiar PowerShell syntax and constructs.

» Robust sessions: PowerShell V3 supports more robust sessions. Sessions can now
be retained amid network interruptions. These sessions will remain open until they
time out.

» Scheduled jobs: There is an improved support for scheduled tasks. There are new
cmdlets in the PSScheduledJob module that allow you to create, enable, and
manage scheduled tasks.

» Module AutoLoading: If you use a cmdlet that belongs to a module that hasn't been
loaded yet, this will trigger PowerShell to search PSModulePath and load the first
module that contains that cmdlet. This is something we can easily test:

Chapter 1

#check current modules in session
Get-Module

#use cmdlet from CimCmdlets module, which
#is not loaded yet
Get-CimInstance win32 bios

#note new module loaded CimCmdlets
Get-Module

#use cmdlet from SQLPS module, which
#is not loaded yet
Invoke-Sglcmd -Query "SELECT GETDATE ()" -ServerInstance "KERRIGAN"

#note new modules loaded SQLPS and SQLASCmdlets
Get-Module

Web service support: PowerShell V3 introduces the Invoke-WebRequest cmdlet,
which sends HTTP or HTTPS requests to a web service and returns the object-

based content that can easily be manipulated in PowerShell. You can think about
downloading entire websites using PowerShell (and check out Lee Holmes' article on
it: http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-
entire-wordpress-blog/).

Simplified language syntax: Writing your Where-Object and Foreach-Object
has just become cleaner. Improvements in the language include supporting default
parameter values, and simplified syntax.

What you used to write in V1 and V2 with curly braces and $__ as follows:
Get-Service | Where-Object { $_ .Status -eq 'Running' }

can now be rewritten in V3 as:

Get-Service | Where-Object Status -eq 'Running'’

http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-entire-wordpress-blog/
http://www.leeholmes.com/blog/2012/03/31/how-to-download-an-entire-wordpress-blog/

Getting Started with SQL Server and PowerShell

» Improved Integrated Scripting Environment (ISE): The new ISE comes with
Intellisense, searchable commands in the sidebar, parameter forms, and live
syntax checking.

[Administrator: Windows PowerShell 1SE ol =l

Fle Edit View Debug Add-ons Help Searchable Commands
[= I ax»| 9 B & &F
Untitled12.ps1* X Intellisense - Commands X x
1 (.;E,t_l Modules: IAII j
£} [Get-Adl il
£} Get-Als Mame: ICon\:er
£} Get-AppLockerFileInforration
I—_‘|>I' pp : ConvertFrom-Csv =]
Ep Get-AppLockerPolicy T R e
£} Get-AuthenticodeSignature ConvertFrom-SecureString J
5d R ConvertFrom-5tringData
.&—.D: Get-BitsTransfer ConvertTo-Cen
&_I)\ Get-BpaModel ConvertTo-Himl ;I
£} Get-BpaResult
= Parameters: B
Ejl Get-Chiditem =l SIAmEEs Bl

ConvertFrom-Json |

PS SQLSERVER:\> parameter Form _—l—r—.lnputobject: & |

“

~ Common Parameters

¥ Sho. F\||‘| lns-ertl Cowl Hide

Zoom Lnl Col5 '—l—120%j

Before you start: Working with SQL Server

and PowerShell

Before we dive into the recipes, let's go over a few important concepts and terminologijes that
will help you understand how SQL Server and PowerShell can work together:

» PSProvider and PSDrive: PowerShell allows different data stores to be accessed as if
they are regular files and folders. PSProvider is similar to an adapter, which allows
these data stores to be seen as drives.

To get a list of the supported PSProvider objects, type:

Get-PSProvider

You should see something similar to the following screenshot:

Name

Alias
Environment
FileSystem
Function
Registry
variable
Certificate
WSMan
sqlserver

Capabilities
shouldProcess
shouldProcess

Filter, shouldProcess

shouldProcess

shouldProcess, Transactions

ShouldProcess
ShouldProcess
Credentials
Credentials

Drives
{Alias}
{Env}

{c, A, D}
{Function}
{HKLM, HKCU}
{variable}
{Cert}
{wsMan}
{SQLSERVER}

Chapter 1

Depending on which instance of PSProvider is already available in your system,
yours may be slightly different:

PSDrive: Think of your C: \, but for data stores other than the file system. To get a
list of PSDrive objects in your system, type:

Get-PSDrive

You should see something similar to the following screenshot:

Name Used (GB) Free (GB) Provider Root

A FileSystem A\

Alias Alias

C 46.18 33.72 Filesystem RN

Cert Certificate \

D FileSystem D:Y

Env Environment

Function Function

HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
SQLSERVER sqlserver SQLSERVER:\
variable variable

WSMan WSMan

Note that there is a PSDrive for SQLServer, which can be used to navigate, access,
and manipulate SQL Server objects.

Execution policy: By default, PowerShell will abide by the current execution policy to
determine what kind of scripts can be run. For our recipes, we are going to assume
that you will run PowerShell as the administrator on your test environment. You will
also need to set the execution policy to RemoteSigned:

Set-ExecutionPolicy RemoteSigned

This setting will allow PowerShell to run digitally-signed scripts, or
local unsigned scripts.

Modules and snap-ins: Modules and snap-ins are ways to extend PowerShell. Both
modules and snap-ins can add cmdlets and providers to your current session. Modules
can additionally load functions, variables, aliases, and other tools to your session.

s

Getting Started with SQL Server and PowerShell

Snap-ins are Dynamically Linked Libraries (DLL), and need to be registered before
they can be used. Snap-ins are available in V1, V2, and V3. For example:

Add-PSSnapin SglServerCmdletSnapinl00

Modules, on the other hand, are more like your regular PowerShell .ps1 script files.
Modules are available in V2 and V3. You do not need to register a module to use it,
you just need to import:

Import-Module SQLPS

For more information on PowerShell basics, check out Appendix B,
Vi PowerShell Primer.

Working with the sample code

Samples in this book have been created and tested against SQL Server 2012 on Windows
Server 2008 R2.

that the book uses, see Appendix D, Creating a SQL Server VM.

How to do it...

If you want to use your current machine without creating a separate VM, as illustrated in
Appendix D, Creating a SQL Server VM, follow these steps to prepare your machine:

[To work with the sample code in this book using a similar VM setup]
i

1. Install SQL Server 2012 on your current operating system—either Windows 7
or Windows Server 2008 R2. See the list of supported operating systems for
SQL Server 2012:

http://msdn.microsoft.com/en-us/library/msl43506.aspx

2. Install PowerShell V3.

Although PowerShell V3 comes installed with Windows 8 and Windows Server 2012,
at the time of writing this book these two operating systems are not listed in the list
of operating systems that SQL Server 2012 supports.

To install PowerShell V3 on Windows 7 SP1, Windows Server 2008 SP2,
or Windows Server 2008 R2 SP1:

Install Microsoft .NET Framework 4.0, if it's not already there.

http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://msdn.microsoft.com/en-us/library/ms143506.aspx

Chapter 1

Download and install Windows Management Framework 3.0, which contains
PowerShell V3. At the time of writing this book, the Release Candidate (RC)
is available from:

http://www.microsoft.com/en-us/download/details.
aspx?id=29939
3. Enable PowerShell V3 ISE. We will be using the improved Integrated Scripting
Environment in many samples in this book:

o Right-click on Windows PowerShell on your taskbar and choose Run
as Administrator.

o Execute the following:
PS C:\Users\Administrator>Import-Module ServerManager PS C:\
Users\Administrator>Add-WindowsFeature PowerShell-ISE

o Test to ensure you can see and launch the ISE:
PS C:\Users\Administrator> powershell ise

Alternatively you can go to Start | All Programs | Accessories | Windows
PowerShell | Windows PowerShell ISE.

o Set execution policy to RemoteSigned by executing the following,

on the code editor:

Set-ExecutionPolicy RemoteSigned

. If you want to run PowerShell V2 and V3 side by side, you can check out
a Jeffery Hicks' article, PowerShell 2 and 3, Side by Side:
/;(

http://mcpmag.com/articles/2011/12/20/powershell-
2-and-3-side-by-side.aspx

» Check out the PowerShell V3 Sneak Peek Screencast:
http://technet.microsoft.com/en-us/edge/Video/hh533298

» See also the SQL Server PowerShell documentation on MSDN:
http://msdn.microsoft.com/en-us/library/hh245198 (SQL.110) .aspx

http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://www.microsoft.com/en-us/download/details.aspx?id=29939
http://mcpmag.com/articles/2011/12/20/powershell-2-and-3-side-by-side.aspx
http://mcpmag.com/articles/2011/12/20/powershell-2-and-3-side-by-side.aspx
http://technet.microsoft.com/en-us/edge/Video/hh533298
http://technet.microsoft.com/en-us/edge/Video/hh533298
http://msdn.microsoft.com/en-us/library/hh245198(SQL.110).aspx
http://msdn.microsoft.com/en-us/library/hh245198(SQL.110).aspx

Getting Started with SQL Server and PowerShell

Exploring the SQL Server PowerShell

hierarchy

In SQL Server 2012, the original mini-shell has been deprecated, and SQLPS is now provided

as a module. Launching PowerShell from SSMS now launches a Windows PowerShell session,
imports the SQLPS module, and sets the current context to the item the PowerShell session was
launched from. DBAs and developers can then start navigating the object hierarchy from here.

Getting ready

Log in to SQL Server 2012 Management Studio.

How to do it...

In this recipe, we will navigate the SQL Server PowerShell hierarchy by launching a PowerShell
session from SQL Server Management Studio:

1. Right-click on your instance node.

2. Click on Start PowerShell. This will launch a PowerShell session and load the SQLPS
module. This window looks similar to a command prompt, with a prompt set to the
SQL Server object you launched this window from:

Bx SQL Server Powershell
PS5 SOLSERVER:'\SOLA\KERRIGAWN\DEFAULT:

Note the starting path in this window.

3. Type dir. This should give you a list of all objects directly accessible from the current
server instance—in our case, from the default SQL Server instance KERRIGAN. Note
that dir is an alias for the cmdlet Get-ChildItem.

By SQL Server Powershell

Resour ceGovernor

Roles
ServerauditSpeciftications
SystemDataTypes
SystemMessages

riggers
UserDefinedvessages

Chapter 1

This is similar to the objects you can find under the instance node in Object Explorer
in SQL Server Management Studio.

Connect~ 3 3d m E;

3@ Databases
= [Security
[Legins
[Server Roles
[_J Credentials
.3 Cryptographic Providers
[Audits
3 Server Audit Spedfications
= [Server Objects
[_J Badkup Devices
3 Endpoints
3 Linked Servers
[l Triggers
= [Replication
[J Local Publications
3 Local Subscriptions
3 AlwaysOn High Availability
= [Management
L# Policy Management
+1 Data Collection
33} Resource Governor
Ed Extended Events
[_d Maintenance Plans
[SQL Server Logs

I3, Database Mail
Qﬁ Distributed Transaction Coordinator
[Legacy
E 3 Integration Services Catalogs

[ss1sDE
e

3 Jobs
5] Job Activity Monitor

=) |y KERRIGAN (SQL Server 11.0.2100 - KERRIGAN \Administrator)

While our PowerShell window is open, let's explore the SQL Server PSDrive, or the
SQL Server data store, which PowerShell treats as a series of items. Type cd\ . This will
change the path to the root of the current drive, which is our SQL Server PSDrive.

Type dir. This will list all tems accessible from the root SQL Server pPSDrive. You
should see something similar to the following screenshot:

PS SQLSERVER:\>

Name

sl
SQLPolicy
SQLRegistration
DataCollection
XEvent

UtiTity

DAC
IntegrationServ

1 ces
SQLAS

B SQL Server Powershell

P5 SQLSERVER:\S5QLYKERRIGANYDEFAULT=> C

dir

Root Description
SQLSERVER: \SQL . 5QL Server
SQLSERVER:\SQLPolicy SQL Server
SQLSERVER:\SQLRegistration SQL Server
SQLSERVER:\DataCollection SQL Server
SQLSERVER: “XEvent SQL Serwver
SOLSERVER:\Utility SQL Server
SOLSERVER: \DAC 5QL Server
nt
SQLSERVER:\IntegrationServices SQL Server
SQLSERVER: \SQLAS SQL Server

Database Engine

Policy Management
Registrations

Data Collection

Extended Events

utility

Data-Tier Application Compone

Integration Services

Analysis Serwices

]

Getting Started with SQL Server and PowerShell

Close this window.
Go back to Management Studio, and right-click on one of your user databases.

Click on Start PowerShell. Note that this will launch another PowerShell session,
with a path that points to the database you right-clicked from:

Fx SQL Server Powershell

ApplicationRoles
Assemblies
AsymmetricKeys

ertificates
DatabaseAuditSpecifications
Defaults
ExtendedProperties
ExtendedStoredProcedures

StoredProcedures
SymmetricKeys

riggers

UserDefinedAggregates

UserDefinedDataTypes

UserDefinedFunctions

UserDefinedTableTypes
o [lo [=1r 2

Note that the starting path of this window is different from the starting
path when you first launched PowerShell in the second step. If you type
dir from this location, you will see all items that are sitting underneath
the AdventureWorks2008R2 database.

Chapter 1

(Object Explorer -
Comect~ 33) = T 2] 3§ ;
= Ld KERRIGAM (SQL Server 11.0,2100 - KERRIGAN\Administratoy

= [Databases
[l System Databases
[l Database Snapshots
B [J AdventureW 12
|_1l Database Diagrams
1 Tables
L Views
1 Synonyms
= [Programmability
[l Stored Procedures
[Functions
[Database Triggers
[l Assemblies
[J Types
[Rules
[Defaults
[l Plan Guides
[Seguences
[Service Broker
= [Storage
[Ful Text Catalogs
[Partition Schemes
[l Partition Functions
[Full Text Stoplists
[l Search Property Lists
[= 3 Security
[l Users
[Roles
[Schemas
[Asymmetric Keys
[J Certificates
[Symmetric Keys

You can see some of the items enumerated in this screen in SQL Server Management
Studio's Object Explorer, if you expand the AdventureWorks2008R2 database node.

When PowerShell is launched through Management Studio, a context-sensitive PowerShell
session is created, which automatically loads the sQL.PS module. This will be evident in
the prompt, which by default shows the current path of the object from which the Start
PowerShell menu item was clicked.

Ty SQL Server Powershell

Getting Started with SQL Server and PowerShell

SQL Server 2008/2008 R2 was shipped with a SQLPS mini-shell, also referred to as SQLPS
utility. This can also be launched from SSMS by right-clicking on an object from Object
Explorer, and clicking on Start PowerShell. This mini-shell was designed to be a closed shell
preloaded with SQL Server extensions. This shell was meant to be used for SQL Server only,
which proved to be quite limiting because DBAs and developers often need to load additional
snap-ins and modules in order to integrate SQL Server with other systems through PowerShell.
The alternative way is to launch a full-fledged PowerShell session, and depending on your
PowerShell version either load snap-ins or load the SQL.PS module.

In SQL Server 2012, the original mini-shell has been deprecated. When you launch a PowerShell
session from SSMS in SQL Server 2012, it launches the full-fledged PowerShell session, with the
updated SQLPS module loaded by default.

SQL Server is exposed as a PowerShell drive (PSDrive), which allows for traversing of objects
as if they are folders and files. Thus, familiar commands for traversing directories are supported
in this provider, such as dir or 1s. Note that these familiar commands are often just aliases to
the real cmdlet name, in this case, Get-ChildItem.

When you launch PowerShell from Management Studio, you can immediately start navigating
the SQL Server PowerShell hierarchy.

Installing SMO

SQL Server Management Objects (SMO) was introduced with SQL Server 2005 to allow SQL
Server to be accessed and managed programmatically. SMO can be used in any .NET language,
including C#, VB.NET, and PowerShell. SMO is the key to automating most SQL Server tasks.
SMO is also backward compatible to previous versions of SQL Server, extending support all the
way to SQL Server 2000.

SMO is comprised of two distinct classes: instance classes and utility classes.

Instance classes are the SQL Server objects. Properties of objects such as the server, the
databases, and tables can be accessed and set using the instance classes.

Utility classes are helper or utility classes that accomplish common SQL Server tasks.
These classes belong to one of three groups: Transfer class, Backup and Restore classes,
or Scripter class.

To gain access to the SMO libraries, SMO needs to be installed, and the SQL Server-related
assemblies need to be loaded.

Getting ready

There are a few ways to get SMO installed:

>

Chapter 1

If you are installing SQL Server 2012, or already have SQL Server 2012, SMO can
be installed by installing Client Tools SDK. Get your install disk or image ready.

If you want just SMO installed without installing SQL Server, download the SQL

Server Feature 2012 pack.

How to do it...

If you are installing SQL Server or already have SQL Server:

1.
2.

5. Complete your installation.

Load up your SQL Server install disk or image, and launch the setup. exe file.

Select New SQL Server standalone installation or add features to an

existing installation.

Choose your installation type, and click on Next.

In the Feature Selection window, make sure you select Client Tools SDK.

Feature Selection

Select the Evaluation features to install.

Setup Support Rules
Installation Type

Feature Selection
Installation Rules

Disk Space Requirements

Error Reporting

Installation Configuration Rules
Ready to Install

Installation Progress

Complete

Features:

Instance Features
Database Engine Services
SQL Server Replication
Full-Text and Semantic Extractions for Search
Data Quality Services
Analysis Services
Reporting Services - Native
Shared Features
Reporting Services - SharePoint
Reporting Services Add-in for SharePoint Products
Data Quality Client
Business Inteligence Development Studio
Client Tools Connectivity
Integration Services
Client Tools Backwards Compatibility
Client Tools SDK ffs——
Books Online Components
Management Tools - Basic
Management Tools - Complete
["1 Distributed Replav Controller

After this, you should already have all the binaries needed to use SMO.

[}

Getting Started with SQL Server and PowerShell

If you are not installing SQL Server, you must install SMO using the SQL Server Feature Pack

on the machine you are using SMO with:

1.

By default, the SMO assemblies will be installed in <SQL Server Install Directory>\110\

Open your web browser, go to your favorite search engine, and search for

SQL Server 2012 Feature Pack.
Download the package.

Double-click on SharedManagementObjects.msi to install.

There's more...

SDK\Assemblies.

Loading SMO assemblies

Before you can use the SMO library, the assemblies need to be loaded. In SQL Server 2012,

. = Local Disk (C:) = Program Files (x86) = Microsoft SQL Server = 110 = SDK + Assemblies =

%] Microsoft. SglServer.Management. Sdk. Sfe.dll
Zaldicencoft,

glserver Mapasesent. Utility.d

this step is easier than ever.

Getting ready

SQL Management Objects(SMO) must have already been installed on your machine.

Incdude inlibrary * Share with = New folder
MName “ Date modified Type | Size

Jen 10/30/2011 12:55PM File folder
%) Microsoft, AnalysisServices DLL 6/25/20119:45 AM Application extension 1,362 KB)
| Microsoft.DataWarehouse. Interfaces. DLL 6/25/20119:45 AM Application extension 27 KB
|| Microsoft.ExceptionMessageBox.dll 6/25/20119:45 AM Application extension 134 KE3
| Microsoft.SqlServer . ConnectionInfo.dll 6/24/20116:22 FM Application extension 158 KB
)] Microsoft. SqlServer. ConnectionInfoExtended.dll 6/25/2011 9:43 AM Application extension 93 KB
) Microsoft.SqlServer.Dmf. Adapters.dll 6/25/2011 9:43 AM Application extension 62 KB
%] Microsoft.SqlServer.Dmf.dl 6/24/20116:22 FM Application extension 346 KB
%] Microsoft. SqlServer.DmfSglClrWrapper.dll 6/24/20116:22 FM Application extension
%] Microsaft. SqlServer,Dts.Design.dll 6/25/20119:43 AM Application extension
%] Microsoft.SqlServer DTSPipelineWrap. di 6/25/20119:43 AM Application extension 63 KB
%) Microsoft, SQLServer DTSRuntimeWrap.dil 6/25/20119:43 AM Application extension 175 K
%) Microsoft. SQLServer.ManagedDTs.dl 6/25/20119:43 AM Application extension 430 K
%) Microsoft. SqlServer.Management. Collector.dll 6/25/2011 3:43 AM Application extension 36 KB
%] Microsoft. SqlServer.Management. CollectorEnum.dil - 6/25/2011 9:43 AM Application extension 33K

6/24/20116:22 FPM Application extension 432 KEJ

=]

Chapter 1

How to do it...

In this recipe, we will load the SQL.PS module.
1. Open up your PowerShell console, or PowerShell ISE, or your favorite
PowerShell editor.

2. Type the import-module command as follows:
Import-Module SQLPS

3. Confirm that the module is loaded:
Get-Module

The way to load SMO assemblies has changed between different versions of PowerShell.

In PowerShell v1, loading assemblies can be done explicitly using the Load () or
LoadWithPartialName () methods. LoadWithPartialName () accepts the partial name
of the assembly, and loads from the application directory or the Global Assembly Cache (GAC):

[void] [Reflection.Assembly] : :LoadWithPartialName ("Microsoft.SglServer.
Smo")

Although LoadWithPartialName () is still supported and still remains a popular way
of loading assembilies, this method should not be used because it will be deprecated in
future versions.

Load () requires the fully qualified name of the assembly:

[void] [Reflection.Assembly] : :Load ("Microsoft.SglServer.Smo,
Version=9.0.242.0, Culture=neutral, PublicKeyToken=89845dcd8080cc9l")

In PowerShell V2, assemblies can be added by using Add-Type:
Add-Type -AssemblyName "Microsoft.SglServer.Smo"

In PowerShell V3, loading these assemblies one by one is no longer necessary as long as the
SQLPS module is loaded:

Import-Module SQLPS

There may be cases where you will still want to load specific DLL versions if you are dealing
with specific SQL Server versions. Or you may want to load only specific assemblies without
loading the whole SQLPS module. In this case, the Add-Type command is still the viable
method of bringing the assemblies in.

s

Getting Started with SQL Server and PowerShell

There's more...

When you import the SQL.PS module, you might see an error about conflicting or
unapproved verbs:

The names of some imported commands from the module SQLPS
* include unapproved verbs that might make them less discoverable. To

find the commands with unapproved verbs, run the Import-Module
’ command again with the Verbose parameter. For a list of approved

verbs, type Get -Verb.

This means there are some cmdlets that do not conform to the PowerShell naming
convention, but the module and its containing cmdlets are still all loaded into your host. To
suppress this warning, import the module with the -DisableNameChecking parameter.

» The Installing SMO recipe

Discovering SQL-related cmdlets and

modules

In order to be effective at working with SQL Server and PowerShell, knowing how to explore
and discover cmdlets, snap-ins, and modules is in order.

Getting ready

Log in to your SQL Server instance, and launch PowerShell ISE. If you prefer the console, you
can also launch that instead.

How to do it...

In this recipe we will list the SQL-Server related commands and cmdlets.

1. To discover SQL-related cmdlets, type the following in your PowerShell editor and run:

#thow many commands from modules that
#have SQL in the name
Get-Command -Module "*SQL*" | Measure-Object

#list all the SQL-related commands
Get-Command -Module "*SQL*" |
Select CommandType, Name, ModuleName |

Sort -Property ModuleName, CommandType, Name |

Format-Table

-AutoSize

After you execute the line, your output window should look similar to the
following screenshot:

Count
Average
Sum

M a1 mum
M1 n7mum
Property :

CommandType

Function
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet

HEE s

Add-RoleMember
Backup-ASDatabase
Invoke-ASCmd
Invoke-ProcessCube
Invoke-ProcessDimension
Invoke-ProcessPartition
Merge-Partition
New-RestoreFolder
New-RestoreLocation
Remove-RoleMember
Restore-ASDatabase
SOLSERVER

Add-5qTAvailabilityDatabase
Add-5qTlAvailabilityGrouplistenerStaticlp

Backup-5qlDatabase
Convert-UrnToPath
Decode-5q1Name
Disable-SqTHADRService

ModuleName
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SOLASCMDLETS
SOLASCMDLETS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS

Chapter 1

2. To see which of these modules are loaded, type the following in your editor and run:

Get-Module -Name "*SQL*"

If you have already used any of the cmdlets in the previous step, then you should see
both SQLPS and SQLASCMDLETS. Otherwise, you will need to load these modules
before you can use them.

3. To explicitly load these modules, type the following and run:

Import-Module -Name "SQLPS"

Note that SQLASCMDLETS will be loaded when you load SQLPS.

At the core of PowerShell are cmdlets. A cmdlet (pronounced commandlet) can be a compiled,
reusable .NET code, or an advanced function, or a workflow that typically performs a very

specific task. All cmdlets follow the verb-noun naming notation.

s

Getting Started with SQL Server and PowerShell

PowerShell ships with many cmdlets and can be further extended if the shipped cmdlets are
not sufficient for your purposes.

A legacy way of extending PowerShell is by registering additional snap-ins. A snap-in is a binary,
or a DLL, that contains cmdlets. You can create your own by building your own .NET source,
compiling, and registering the snap-in. You will always need to register snap-ins before you can
use them. Snap-ins are a popular way of extending PowerShell.

The following table summarizes common tasks with snap-ins:

Task Syntax

List loaded snap-ins Get-PSSnapin

List installed snap-ins Get-PSSnapin -Registered

Show commands in a snap-in Get-Command -Module "SnapinName"
Load a specific snap-in Add-PSSnapin "SnapinName"

When starting, PowerShell V2, modules are available as the improved and preferred method
of extending PowerShell.

A module is a package that can contain cmdlets, providers, functions, variables, and
aliases. In PowerShell V2, modules are not loaded by default, so required modules need
to be explicitly imported.

Common tasks with modules are summarized in the following table:

Task Syntax

List loaded modules Get-Module

List installed modules Get-Module -ListAvailable

Show commands in a module Get-Command -Module "ModuleName"
Load a specific module Import-Module -Name "ModuleName"

One of the improved features with PowerShell V3 is that it supports autoloading modules.
You do not need to always explicitly load modules before using the contained cmdlets. Using
the cmdlet in your script is enough to trigger PowerShell to load the module that contains it.

The SQL Server 2012 modules are located in the PowerShell/Modules folder of the
Install directory:

=

.= Program Files (x86) = Microsoft SQL Server = 110 = Tools = PowerShell = Modules ~

r

Include in library « Share with ~ Mew folder

MName “ Date modified Type
, SQLASCMDLETS 10/30/2011 12:47PM File folder
. SQLPS 10/30/2011 12:54PM File folder

The following table shows the list of the SQLPS and SQLASCMDLETS cmdlets of this version:

CommandType Name

ModuleName

Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet

Add-RoleMember
Backup-ASDatabase
Invoke-ASCmd
Invoke-ProcessCube
Invoke-ProcessDimension
Invoke-ProcessPartition
Merge-Partition
New-RestoreFolder
New-RestoreLocation
Remove-RoleMember
Restore-ASDatabase
Add-SglAvailabilityDatabase

Add-SglAvailabilityGroupListenerStaticIp

Backup-SglDatabase
Convert-UrnToPath
Decode-SglName
Disable-SglHADRService
Enable-SglHADRService
Encode-SglName
Invoke-PolicyEvaluation
Invoke-Sglcmd
Join-SglAvailabilityGroup
New-SglAvailabilityGroup
New-SglAvailabilityGroupListener
New-SglAvailabilityReplica
New-SglHADREndpoint

SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLASCMDLETS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS
SQLPS

Chapter 1

=]

Getting Started with SQL Server and PowerShell

CommandType Name ModuleName
Cmdlet Remove-SglAvailabilityDatabase SQLPS
Cmdlet Remove-SqglAvailabilityGroup SQLPS
Cmdlet Remove-SglAvailabilityReplica SQLPS
Cmdlet Restore-SglDatabase SQLPS
Cmdlet Resume-SqglAvailabilityDatabase SQLPS
Cmdlet Set-SglAvailabilityGroup SQLPS
Cmdlet Set-SglAvailabilityGroupListener SQLPS
Cmdlet Set-SglAvailabilityReplica SQLPS
Cmdlet Set-SglHADREndpoint SQLPS
Cmdlet Suspend-SglAvailabilityDatabase SQLPS
Cmdlet Switch-SglAvailabilityGroup SQLPS
Cmdlet Test-SglAvailabilityGroup SQLPS
Cmdlet Test-SglAvailabilityReplica SQLPS
Test-SglDatabaseReplicaState SQLPS

To learn more about these cmdlets, use the Get -Help cmdlet. For example:

Get-Help "Invoke-Sglcmd"

Get-Help "Invoke-Sglcmd" -Detailed
Get-Help "Invoke-Sglcmd" -Examples
Get-Help "Invoke-Sglcmd" -Full

You can also check out the MSDN article on SQL Server database engine cmdlets:
http://msdn.microsoft.com/en-us/library/cc281847.aspx
When you load the SQLPS module, several assemblies are loaded into your host.

To get a list of SQL Server-related assemblies loaded with the SQL.PS module, use the
following script, which will work in both PowerShell V2 and V3:

Import-Module SQLPS -DisableNameChecking

[appdomain] : : CurrentDomain.GetAssemblies () |
Where {$.FullName -match "SglServer" } |
Select FullName

If you want to run on a strictly V3 environment, you can take advantage of the simplified syntax:

Import-Module SQLPS -DisableNameChecking

[appdomain] : : CurrentDomain.GetAssemblies () |
Where FullName -match "SglServer" |
Select FullName

=]

http://msdn.microsoft.com/en-us/library/cc281847.aspx
http://msdn.microsoft.com/en-us/library/cc281847.aspx

This will show you all the loaded assemblies, including their public key tokens:

Chapter 1

FullName

sqlServer.

Mjcrosoft.

I i

Management.

al, Publiq

More information on running PowerShell scripts

Microsoft.5qlServer.Smo, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89845d¢
Microsoft.5qlServer.Dmf, Version=11.0.0.0, Culture=neutral, PublicKeyToken=83845dd
Microsoft.sqlServer. SqglWmiManagement, Version=11.0.0.0, Culture=neutral, PublicKey
Microsoft.5glsServer.ConnectionInfo, Version=11.0.0.0, Culture=neutral, PublicKeyTs
Microsoft.5qlServer. SmoExtended, VWersion=11.0.0.0, Culture=neutral, PublicKeyTokef
Microsoft.5qlServer.Management. RegisteredServers, Version=11.0.0.0, Culture=neutr3
Microsoft.5glsServer.Management. 5dk. 5fc, Version=11.0.0.0, Culture=neutral, Publick
Microsoft.sqlServer. SglEnum, Version=11.0.0.0, Culture=neutral, PublicKeyToken=89%
Microsoft.5qlServer.RegSvrEnum, Wersion=11.0.0.0, Culture=neutral, PublicKeyToken
Microsoft.5qlServer.WmiEnum, Version=11.0.0.0, Culture=neutral, PublicKeyToken=8%4
Microsoft.sqlServer. ServiceBrokerEnum, Version=11.0.0.0, Culture=neutral, Publicks
Microsoft.5qlServer.Management.Collector, Version=11.0.0.0, Culture=neutral, Publ®
Microsoft.5qlServer.Management. CollectorEnum, Version=11.0.0.0, Culture=neutral,
Microsoft.sqlServer.Management. Utility, Version=11.0.0.0, Culture=neutral, Publick
Microsoft.5qlServer.Management. Uti1ityEnum, Version=11l.0.0.0, Culture=neutral,
Microsoft. 5qlServer.Management. HadrDMF, Version=11.0.0.0, Culture=neutral, Publicki
Microsoft.5qlServer.Management.P55napins, Version=11.0.0.0, Culture=neutral, Publj
e=neutral,

By default, PowerShell is running in restricted mode, in other words, it does not run scripts. To
run our scripts from the book, we will set the execution policy to RemoteSigned as follows:

Set-ExecutionPolicy RemoteSigned

See the Execution policy section in Appendix B, PowerShell Primer,
e for further explanation of different execution policies.

If you save your PowerShell code in a file, you need to ensure it has a . ps1 extension otherwise
PowerShell will not run it. Ideally the filename you give your script does not have spaces. You can
run this script from the PowerShell console simply by calling the name. For example if you have a
script called myscript.psl located in the C:\ directory, this is how you would invoke it:

PS C:\> .\myscript.psl

If the file or path to the file has spaces, then you will need to enclose the full path and file

name in single or double quotes, and use the call (&) operator:

PS C:\>&'.\my script.psl'

If you want to retain the variables and functions included in the script, in memory, thus making
them available globally in your session, then you will need to dot source the script. To dot source

is literally to prefix the filename, or the path to the file, with a dot and a space:

PS C:\> . .\myscript.psl
PS C:\> . '.\my script.psl'

e

Getting Started with SQL Server and PowerShell

More information on mixed assembly error

You may encounter an error when running some commands that are built using older .NET
versions. Interestingly, you may see this while running your script in the PowerShell ISE, but
not necessarily in the shell.

Invoke-Sglcmd: Mixed mode assembly is built against version 'V2.0.50727'
of the runtime and cannot be loaded in the 4.0 runtime without additional
configuration information.

A few steps are required to solve this issue:

1.
2.

Open Windows Explorer.

Identify the Windows PowerShell ISE install folder path. You can find this out by going
to Start | All Programs | Accessories | Windows | PowerShell, and then right-
clicking on the Windows PowerShell ISE menu item and choosing Properties.

For the 32-bit ISE, this is the default path:
$windir%\sysWOW64\WindowsPowerShell\vl.0\PowerShell ISE.exe

For the 64-bit ISE, this is the default path:
$windir%\system32\WindowsPowerShell\vl.0\PowerShell ISE.exe

Go to the PowerShell ISE Install folder.
Create an empty file called powershell ise.exe.config.
Add the following snippet to the content and save the file:

<?xml version="1.0" encoding="utf-8" ?>
<configurations>

<startup uselegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0" />

</startup>

<runtime>

<generatePublisherEvidence enabled="false" />
</runtime>

</configurations>

Reopen PowerShell ISE and retry the command that failed.

=]

Chapter 1

Creating a SQL Server instance object

Most of what you will need to do in SQL Server will require a connection to an instance.

Getting ready

Open up your PowerShell console, the PowerShell ISE, or your favorite PowerShell editor.

You will need to note what your instance name is. If you have a default instance, you can
use your machine name. If you have a named instance, the format will be <machine
names>\<instance names.

How to do it...

If you are connecting to your instance using Windows authentication, and using your current
Windows login, follow these steps:

1.

Import the SQL.PS module:

#import SQLPS module
Import-Module SQLPS -DisableNameChecking

Store your instance name in a variable as follows:

#create a variable for your instance name
$instanceName = "KERRIGAN"

If you are connecting to your instance using Windows authentication using the
account you are logged in as:

#create your server instance
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

If you are connecting using SQL Authentication, you will need to know the username
and password that you will use to authenticate. In this case, you will need to add
the following code, which will set the connection to mixed mode and prompt for the
username and password:

#set connection to mixed mode
$server.ConnectionContext.set LoginSecure ($false)

s

Getting Started with SQL Server and PowerShell

#set the login name

#of course we don't want to hardcode credentials here
#so we will prompt the user

#note password is passed as a SecureString type
Scredentials = Get-Credential

#remove leading backslash in username

$login = $credentials.UserName -replace("\\", "")
$server.ConnectionContext.set Login($login)

$server.ConnectionContext.set SecurePassword($Scredentials.
Password)

#check connection string
$server.ConnectionContext.ConnectionString

Write-Verbose "Connected to $($Sserver.Name)"

Write-Verbose "Logged in as $($server.ConnectionContext.
TrueLogin) "

Before you can access or manipulate SQL Server programmatically, you will often need to
create references to its objects. At the most basic is the server.

The server instance uses the type Microsoft.SglServer.Management .Smo.Server
By default, connections to the server are made using trusted connections, meaning it uses
the Windows account you're currently using when you log into the server. So all it needs is

the instance name in its argument list:

#icreate your server instance

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

If, however, you need to connect using a SQL login, you will need to set the
ConnectionContext .LoginSecure property of the SMO Server class setting to false:

#set connection to mixed mode
$server.ConnectionContext.set LoginSecure ($false)

You will also need to explicitly set the username and the password. The best way to
accomplish this is to prompt the user for the credentials.

#prompt
Scredentials = Get-Credential

NED

Chapter 1

The credential window will capture the login and password. The Get -Credential cmdlet
returns the username with a leading backslash if the domain is not specified. In this case, we
want to remove this leading backslash.

#remove leading backslash in username
$login = Scredentials.UserName -replace("\\","")

Once we have the login, we can pass it to the set Login method. The password is already a
SecureString type, which is what the set _SecurePassword expects, so we can readily
pass this to the method:

$server.ConnectionContext.set Login($login)
$server.ConnectionContext.set SecurePassword($credentials.Password)

Should you want to hardcode the username and just prompt for the password, you can also
do this:

$login="belle"

#prompt
Scredentials = Get-Credential -Credential $login

In the script, you will also notice we are using Write-Verbose instead of Write-Host to
display our results. This is because we want to be able to control the output without needing
to always go back to our script and remove all the Write-Host commands.

By default, the script will not display any output, that is, the $vVerbosePreference special
variable is set to SilentlyContinue. If you want to run the script in verbose mode, you
simply need to add this line in the beginning of your script:

SVerbosePreference = "Continue"
When you are done, you just need to revert the value to SilentlyContinue:

SVerbosePreference = "SilentlyContinue"

» The Loading SMO assemblies recipe
» The Creating SQL Server instance using SMO recipe

Es

Getting Started with SQL Server and PowerShell

Exploring SMO server objects

SQL Management Objects (SMO) comes with a hierarchy of objects that are accessible
programmatically. For example, when we create an SMO server variable, we can then access
databases, logins, and database-level triggers. Once we get a handle of individual databases,
we can then traverse the tables, stored procedures, and views that it contains. Since many
tasks involve SMO objects, you will be at an advantage if you know how to discover and
navigate these objects.

Getting ready

Open up your PowerShell console, the PowerShell ISE, or your favorite PowerShell editor.

You will also need to note what your instance name is. If you have a default instance, you
can use your machine name. If you have a named instance, the format will be <machine
names\<instance name>

How to do it...

In this recipe, we will start exploring the hierarchy of objects with SMO.

1. Import the SQL.PS module as follows:
Import-Module SQLPS -DisableNameChecking

2. Create a server instance as follows:

SinstanceName = "KERRIGAN"

$server = New-Object ~
-TypeName Microsoft.SglServer.Management.Smo.Server ~
-ArgumentList $instanceName

3. Get the SMO objects directly accessible from the $server object:
$server |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

4. Now let's check SMO objects under databases. Execute the following line:

$server.Databases |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

Chapter 1

5. To check out the tables, you can type and execute:

$server.Databases ["AdventureWorks2008R2"] .Tables |
Get-Member -MemberType "Property" |
Where Definition -like "*Smo*"

SMO contains a hierarchy of objects. At the very top there is a server object, which in turn
contains objects such as Databases, Configuration, SglMail, LoginCollection,
and the like. These objects in turn contain other objects, for example, Databases is a
collection that contains Database objects, and a Database in turn, contains Tables
and so on.

See also

» The Loading SMO assemblies recipe
» The Creating a SQL Server instance using SMO recipe
» You can also check out the SMO object model diagram from MSDN:

http://msdn.microsoft.com/en-us/library/msl162209 (SQL.110) .aspx

s

http://msdn.microsoft.com/en-us/library/ms162209(SQL.110).aspx
http://msdn.microsoft.com/en-us/library/ms162209(SQL.110).aspx

SQL Server and

PowerShell Basic Tasks

In this chapter, we will cover:

>

Listing SQL Server instances

Discovering SQL Server services
Starting/stopping SQL Server services
Listing SQL Server configuration settings
Changing SQL Server instance configurations
Searching for database objects

Creating a database

Altering database properties

Dropping a database

Changing a database owner

Creating a table

Creating a view

Creating a stored procedure

Creating a trigger

Creating an index

Executing a query / SQL script

Performing bulk export using Invoke-Sqglcmd
Performing bulk export using bcp
Performing bulk import using BULK INSERT

Performing bulk import using bcp

SQL Server and PowerShell Basic Tasks

Introduction

This chapter demonstrates scripts and snippets of code that accomplish some basic SQL
Server tasks, using PowerShell. We will start with simple tasks, such as listing SQL Server
instances and creating objects such as tables, indexes, stored procedures, and functions,
to get you comfortable with working with SQL Server programmatically.

You will find that many of the recipes can be accomplished using PowerShell and SQL
Management Objects (SMO). SMO is a library that exposes SQL Server classes, which
allows for programmatic manipulation and automation of many database tasks. For some
recipes, we will also explore alternative ways of accomplishing the same tasks, using
different native PowerShell cmdlets.

SMO is explained in more detail in Chapter 1, Getting Started
i with SQL Server and PowerShell.

Even though we are exploring how to create some common database objects using
PowerShell, | would like to note that PowerShell is not always the best tool for the task.
There will be tasks that are best left accomplished using T-SQL. Even so, it is still good
to know what is possible with PowerShell and how to do it, so that you know you have
alternatives depending on your requirements or situation.

Development environment

The development environment used in the recipes has the following configurations:

Component Syntax

Domain QUERYWORKS

Machine name KERRIGAN

Instances KERRIGAN or (local) or localhost
SQLO1

Databases AdventureWorks2008R2

Domain accounts QUERYWORKS\aterra
QUERYWORKS\ jraynor
QUERYWORKS\mhorner

Administrator

To simplify the exercises, run the PowerShell scripts as an administrator in your box. In addition,
ensure this account has full access to the SQL Server instance on which you are working.

NEQ

Chapter 2

PowerShell ISE

We will be using the PowerShell ISE for all the scripts in this task. These are some things you
need to remember.

The Script Pane is where you will be typing in your PowerShell code. The Output Pane is
where you will see the results.

The Command Pane is where you can type ad hoc commands, which get executed as soon
as you press Enter.

For our recipes, we will be using the Script Pane to write and execute our scripts. Depending
on the task, you may need to do one of the following:

» Click on the Run Script icon (green arrow) to run all code in the script

» Click on the Run Selection icon right beside it to run only highlighted code

E] Administrator: Windows PowerShell ISE =10l x|

File Edit View Debug Add-ons Help

D& wa» 9| * | 8 |EloDg
|-Unljtled2‘psl* x | @

1 Get-Process Run Selection
2 Get-Process *50QL=

Execute selection only

Script Pane Run Script:
Execute all code

Qutput Pane

PS SQLSERVER:\> ®
.

Command Pane

Ln2 Coll ‘ —J— 100%

Eis

SQL Server and PowerShell Basic Tasks

Running scripts

If you prefer running the script from the PowerShell console rather than running the
commands from the ISE, you can follow these steps:

6.
7.

10.

Save the file with a . ps1 extension.

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell.

We want to be able to run locally created scripts. To do this, we need to
change the ExecutionPolicy t0 RemoteSigned

Set ExecutionPolicy to RemoteSigned.

See the Execution Policy section of the Running PowerShell scripts

recipe in Appendix B, PowerShell Primer, for further explanation of

different execution policies.

You can pick from the following options:

Q

Change directory to where your script is stored and invoke your script
in this way:

PS C:\>.\SampleScript.psl paraml param2
Use the full qualified path to run the .ps1 file:

PS C:\>#if your path has no space
PS C:\>C:\MyScripts\SampleScript.psl paraml param2

PS C:\>#if your path has space
PS C:\>& "C:\My Scripts\SampleScript.psl" paraml param2

If you want to retain the functions and variables in your script throughout
your session, you can dot source your file:

PS C:\>. .\SampleScript.psl paraml param2
PS C:\>. "C:\My Scripts\SampleScript.psl" paraml param2

Chapter 2

Listing SQL Server instances

In this recipe, we will list all SQL Server instances in the local network.

Getting ready

Loginto

the server that has your SQL Server development instance, as an administrator.

How to do it...

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Let's use the Start-Service cmdlet to start SQLBrowser:
Import-Module SQLPS -DisableNameChecking

#sgl browser must be installed and running
Start-Service "SQLBrowser"

Next, you need to create a ManagedComputer object to get access to instances.
Type the following script and run it:

SinstanceName = "KERRIGAN"

$managedComputer = New-Object 'Microsoft.SglServer.Management.Smo.
Wmi .ManagedComputer' S$instanceName

#list server instances
SmanagedComputer.ServerInstances

Your result should look similar to the one shown in the following screenshot:

Server
Parent
Urn
Name
Proper

S5tate

Server
Parent
Urn
Name
Proper

State

UserData

UserData

Protocols : {Np, 5m, Tcp}
: Microsoft. 5ql5erver.Management. Smo. Wmi.ManagedComputer
: ManagedComputer [@Name="KERRIGAN'] /ServerInstance [@Name="M550L5ERVER"]
: MSSQLSERVER
ties 1
: Existing
Protocols : {Np, 5m, Tcp}
: Microsoft. 5qlServer.Management. Smo. Wmi.ManagedComputer
: ManagedComputer [@Name="KERRIGAN'] /ServerInstance [@Name="50QL01"]

: 5QLOL
ties 1

: Existing

Note that $SmanagedComputer.ServerInstances gives you not only instance
names, but also additional properties such as ServerProtocols, Urn, State,
and so on.

s

SQL Server and PowerShell Basic Tasks

4. Confirm that these are the same instances you see in Management Studio. Open up

Management Studio.

5. Go to Connect | Database Engine.

In the Server Name drop-down, click on Browse for More.

Select the Network Servers tab, and check the instances listed. Your screen should

look similar to this:

e
& Browse for Servers

"Local Servers Metwork Servers |

Select a SQL Server instance in the networlk for your connection:

_ Databaze Engine
-5 KERRIGAN (11.0)

e |5 KERRIGAN'.SQLOT

1.0

x|

All services in a Windows operating system are exposed and accessible using Windows
Management Instrumentation (WMI). WMI is Microsoft's framework for listing, setting,
and configuring any Microsoft-related resource. This framework follows Web-based
Enterprise Management (WBEM). Distributed Management Task Force, Inc. defines
WBEM as follows (http://www.dmtf.org/standards/wbem):

a set of management and internet standard technologies developed to unify the
management of distributed computing environments. WBEM provides the ability
for the industry to deliver a well-integrated set of standard-based management
tools, facilitating the exchange of data across otherwise disparate technologies

and platforms.

In order to access SQL Server WMI-related objects, you can create a
WMI ManagedComputer instance:

SmanagedComputer
ManagedComputer'

= New-Object
$instanceName

'Microsoft.SglServer.Management .Smo.Wmi.

The ManagedComputer object has access to a ServerInstance property, which in
turn lists all available instances in the local network. These instances, however, are only
identifiable if the SQL Server Browser service is running.

=)

Chapter 2

SQL Server Browser is a Windows service that can provide information on installed instances
in a box. You need to start this service if you want to list the SQL Server-related services.

An alternative to using the ManagedComputer object is using the System.Data.Sqgl.
SQLSourceEnumerator class to list all the SQL Server instances in the local network, thus:

[System.Data.Sqgl.SglDataSourceEnumerator] : : Instance.GetDataSources () |
Select ServerName, InstanceName, Version |
Format-Table -AutoSize

When you execute this, your result should look similar to the following screenshot:

ServerMame InstanceName Version

KERRIGAN 11.0.1440.159
KERRIGAN 5QL01 11.0.1440.159

Yet another way to get a handle to the SQL Server WMI object is by using the Get -WmiObject
cmdlet. This will not, however, expose exactly the same properties exposed by the Microsoft.
SglServer.Management . Smo.Wmi .ManagedComputer object.

To do this, you will need to discover first what namespace is available in your environment, thus:

Shostname = "KERRIGAN"

$namespace = Get-WMIObject -ComputerName S$hostName -NameSpace root)\
Microsoft\SQLServer -Class " NAMESPACE" |

Where Name -Like "ComputerManagement*"

. If you are using PowerShell V2, you will have to change the Where cmdlet
usage to use the curly braces ({ }) and the $_ variable, thus:
A
Where {$_ .Name -Like "ComputerManagement=*" }

For SQL Server 2012, this value is:
ROOT\Microsoft\SQLServer\ComputerManagementll

Once you have the namespace, you can use this value with Get -WmiObject to retrieve the
instances. One property we can use to filter is SqlServiceType.

http://msdn.microsoft.com/en-us/library/ms179591.aspx

SQL Server and PowerShell Basic Tasks

According to MSDN (http://msdn.microsoft.com/en-us/library/msl179591.aspx),
the following are the values of SglServiceType:

SqlServiceType Description

SQL Server service

SQL Server Agent service
Full-text Search Engine service
Integration Services service
Analysis Services service
Reporting Services service

<N o0 Uk W N

SQL Server Browser service

Thus, to retrieve the SQL Server instances, you need to filter for SQL Server service, or
SQLServiceType = 1.

Get-WmiObject -ComputerName Shostname
-Namespace "$ (Snamespace. NAMESPACE) \$ (S$Snamespace.Name) "
-Class SglService |

Where SQLServiceType -eq 1 |
Select ServiceName, DisplayName, SQLServiceType |
Format-Table -AutoSize

If you are using PowerShell V2, you will have to change the Where
% cmdlet usage to use the curly braces ({ }) and the $_ variable:

o
Where {$_ .SQLServiceType -Like -eqg 1 }

Your result should look similar to the following screenshot:

ServiceName DisplayName SQLServiceType
MSSQL$S0L01 SQL Server (SQLO1) 1
MSSQLSERVER SQL Server (MSSQLSERVER) 1

=

http://msdn.microsoft.com/en-us/library/ms179591.aspx

Chapter 2

Discovering SQL Server services

In this recipe, we enumerate all SQL Server services and list their status.

Getting ready

Check which SQL Server services are installed in your instance. Go to Start | Run and type
services.msc. You should see a screen similar to this:

{} Services (Local)

Thread Ordering Server Name = | Description
. SMMP Trap Receives trap messages generated by local or ...

Start the service % Software Protection Enables the download, installation and enforce. ..
“+. Spedal Administration Console Helper Allows administrators to remotely access a com. ..

Description: 5: 5PP Notification Service Provides Software Licensing activation and not. ..

Provides ordered execution for a group . S0L Full-text Filter Daemon Launcher (MSSQLSERVER) Service to launch full-text filtter daemon proces)..

of threads within & specific peried of tme. | .7 SQL Full-text Filter Daemon Launcher (SQLO1) Service to launch full-text filter daemon proced..
4. 50L Server (MSSQLSERVER) Provides storage, processing and controlled ad..
£ 5QL Server (5QLO1) Provides storage, processing and controlled ad..
£ 5QL Server Agent (MSSQLSERVER) Executes jobs, monitors SQL Server, fires alerd...
L4 5QL Server Agent (SQLO1) Executes jobs, monitors SQL Server, fires alerd...
4 S0L Server Analysis Services (MSSQLSERVER) Supplies online analytical processing (OLAF) ary..
£ 5QL Server Browser Provides SQL Server connection information tof..
£ 5QL Server Integration Services 11.0 Provides management support for S5IS packad...
£ 5QL Server Reporting Services (MSSQLSERVER) Manages, executes, renders, schedules and d|..
£ 5QL Server WSS Writer Provides the interface to backup/restore Micro...
“+. SSDP Discovery Discovers networked devices and services that. ..
%+ System Event Notification Service Monitors system events and notifies subscriber. . ;
%+ Tablet PC Input Service Enables Tablet PC pen and ink functionality

How to do it...

Let's assume you are running this script on the server box.

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following code and execute it:
Import-Module SQLPS

#ireplace KERRIGAN with your instance name

$instanceName = "KERRIGAN"

SmanagedComputer = New-Object 'Microsoft.SglServer.Management.Smo.
Wmi.ManagedComputer' S$instanceName

#list services
$managedComputer.Services |

Select Name, Type, Status, DisplayName |
Format-Table -AutoSize

SQL Server and PowerShell Basic Tasks

Your result will look similar to the one shown in the following screenshot:

Name Type Status DisplayName

MsDt=5erverll0 5glserverIntegrationService SQL Server Integration Services 11.0
MS5QLSSQLOL Sglserver SQL Serwver (5QLO1)

MSSOLFDLauncher 9 SQL Full-text Filter Dasmon Launcher (MSSQLSERVER)
MS5QLFDLauncher$5QL01 9 SQL Full-text Filter Daemon Launcher (5QLO1)
MSSQLSERVER SglServer SQL Serwver (MSSQLSERVER)
M55QL5erverOLAPService AnalysisServer SQL Server Analysis Serwvices (MSSQLSERVER)
ReportServer ReportServer SQL Server Reporting Serwvices (MSSQLSERVER)
SQLAgent$5QLOL SqlAgent SQL Server Agent (SQLOL)

SOLBrowser 5q1Browser SQL Serwver Browser

SQLSERVERAGENT SglAgent SQL Server Agent (MSSQLSERVER)

Items listed on your screen will vary depending on the features installed and
running in your instance.

3. Confirm that these are the services that exist in your server. Check your
services window.

Services that are installed on a system can be queried using WMI. Specific services for SQL
Server are exposed through SMO's WMI ManagedComputer object. Some of the exposed
properties include:

» ClientProtocols

» ConnectionSettings

» ServerAliases

» ServerInstances

» Services

There's more...

An alternative way to get SQL Server-related services is by using Get -WMIObject. We
will need to pass in the hostname, as well as SQL Server WMI provider for the Computer
Management namespace. For SQL Server 2012, this value is:

ROOT\Microsoft\SQLServer\ComputerManagementll

The script to retrieve the services is provided in the following code. Note that we are
dynamically composing the WMI namespace here.

ShostName = "KERRIGAN"

$namespace = Get-WMIObject -ComputerName S$hostName -NameSpace root)\
Microsoft\SQLServer -Class " NAMESPACE" |

=

Chapter 2

Where Name -Like "ComputerManagement*"

Get-WmiObject -ComputerName S$hostname -Namespace "$ ($namespace.
NAMESPACE) \$ ($namespace.Name) " -Class SglService |

Select ServiceName

Yet another alternative but less accurate way of listing possible SQL Server-related services is
the following snippet of code:

#alterative - but less accurate
Get-Service *SQL*

It uses the Get-Service cmdlet and filters based on the service name. It is less accurate
because this cmdlet grabs all processes that have SQL in the name but may not necessarily
be SQL Server-related. For example, if you have MySQL installed, that will get picked up as a
process. Conversely, this cmdlet will not pick up SQL Server-related services that do not have
SQL in the name, such as ReportServer.

See also

» The Listing SQL Server instances recipe

Starting/stopping SQL Server services

This recipe describes how to start and/or stop SQL Server services.

Getting ready

Check which SQL services are installed in your machine. Go to Start | Run and type
Services.msc. You should see a screen similar to this:

£}, Services (Local)
Thread Ordering Server Mame = | Description

++ SNMP Trap Receives trap messages generated by local ar ...

Start the service %+, Software Protection Enables the download, installation and enforce. ..
“.. Spedal Administration Console Helper Allows administrators to remotely access a com...

Description: 5., 5PP Notification Service Provides Software Licensing activation and not...
Provides ordered execution for a group . 50L Full-text Filter Daemon Launcher (MSSQLSERVER) Service to launch full-text filter daemon proced] ..
of threads within a specific period of time. | .~ SQL Full-text Filter Daemon Launcher {SQL01) Service to launch ful-text filter daemon proceq..
£, 50L Server (MS5QLSERVER) Provides storage, processing and controlled ag..

501 Server (SQLO1) Provides storage, processing and controlled ad ..

5. 50L Server Agent (MSSQLSERVER) Executes jobs, monitors SQL Server, fires alerd...,

£ 5QL Server Agent (SQLOL) Executes jobs, monitors SQL Server, fires alerd...

£+ 5QL Server Analysis Services (MSSQLSERVER) Supplies online analytical processing {OLAF) ary..

£, 50L Server Browser Provides SQL Server connection infarmation tof..

£ 50L Server Integration Services 11.0 Provides management support for S5IS packad...

% SOL Server Reporting Services (MSSQLSERVER) Manages, executes, renders, schedules and d|..

£ SQL Server VSS Writer Provides the interface to backup/restore Micro. ..

%+ SSDP Discovery Discovers networked devices and services that...

£+ System Event Notification Service Monitors system events and notifies subscriber. .
% Tablet PC Input Service Enables Tablet PC pen and ink functionality

=]

SQL Server and PowerShell Basic Tasks

How to do it...

Let's look at the steps to toggle states for your SQL Server services:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following code. Note that this code will work in both PowerShell V2 and V3:

SVerbosepreference = "Continue"

services = @ rowser", eportServer
$ 3 (n SQLB n n R p tS n)
ShostName = "KERRIGAN"

$services | ForEach-Object {

$service = Get-Service -Name $
if (Sservice.Status -eqg "Stopped")

{

Write-Verbose "Starting $($Sservice.Name)"
Start-Service -Name S$service.Name

}

else

{

Write-Verbose "Stopping $($service.Name)"
Stop-Service -Name S$service.Name

}

S$VerbosePreference = "SilentlyContinue"

3. Execute and confirm the service status changed accordingly. Go to Start | Run and
type Services.msc.

Thread Ordering Server Name ~ | Description | Status | Startup Type
., Spedal Administration Console Helper Allows adm... Manual
Start the service £ PP Motification Service Provides 5... Manual
5o SOL Full-text Filter Daemon Launcher (MSSQLSERVER) Service tol... Started Manual
Description: 54 5QL Full-text Filter Daemon Launcher (SQLO1) Service tol... Started Manual
Provides ordered execution for a group 54 50L Server (MSSQLSERVER) Provides st... Started Automatic
of threads within a spedfic period of tne. % o) gerver (sqLo 1) Providesst... Started Automatic
54 S0L Server Agent (MSSOQLSERVER) Executes j... Started Automatic
5 S0L Server Agent (SQLO1L) Executes j... Manual
54 5QL Server Analysis Services (MSSQLSERVER) Supplies on... Started Automatic
| £ 5QL Server Browser Provides 5... Automatic I
54 5QL Server Integration Services 11.0 Providesm... Started Automatic
| 045 50L Server Reporting Services (MSSQLSERVER) Manages, ... Automatic |
54, 5QL Server VS5 Writer Provides th... Started Automatic

=)

Chapter 2

For example, in our previous sample, both SQLBrowser and ReportServer were
initially running. Once the script was executed, both services stopped.

In this recipe, we picked two services—SQLBrowser and ReportServer—that we want to
manipulate and saved them into an array:

Sservices = @("SQLBrowser", "ReportServer")

We then pipe the array contents to a Foreach-0Object cmdlet, so we can determine what
action to perform for each service. For our purposes, if the service is stopped, we want to
start it. Otherwise, we stop it. Note that this code will work in both PowerShell V2 and V3:

$services | ForEach-Object {
$service = Get-Service -Name $_
if (Sservice.Status -eqg "Stopped")
Write-Verbose "Starting $(Sservice.Name)"
Start-Service -Name S$service.Name

}

else
Write-Verbose "Stopping $(Sservice.Name)"
Stop-Service -Name S$service.Name

}

You may also want to determine dependent services, or services that rely on a particular
service. You may want to consider synchronizing the starting/stopping of these services with
the main service they depend on.

To identify dependent services, you can use the DependentServices property of the
System.ServiceProcess.ServiceController class:

$services | ForEach-Object {
Sservice = Get-Service -Name $_
Write-Verbose "Services Dependent on $($Sservice.Name)"
$service.DependentServices | Select Name

@1

SQL Server and PowerShell Basic Tasks

The following list shows the properties and methods of the System.ServiceProcess.
ServiceController class, which is generated from the Get -Service cmdlet:

Name MemberType
Name AliasProperty
ReguiredServices AliasProperty
Disposed Event
Close Method
Continue Method
Create0bjRef Method
Dispose Method
Equals Method
ExecuteCommand Method
GetHashCode Method
GetLifetimeService Method
GetType Method
InitializelifetimeService Method
Pause Method
Refresh Method
Start Method
Stop Method
WaitForStatus Method
CanPauseAndContinue Property
CanShutdown Property
CanStop Property
Container Property
DependentServices Property
DisplayName Property
MachineName Property
ServiceHandle Property
ServiceName Property
ServicesDependedOn Property
ServiceType Property
Site Property
Status Property
ToString ScriptMethod

An alternative way of working with SQL Server services is by using the Microsoft.
SglServer.Management . Smo.Wmi .ManagedComputer class. Note that the following
code will work in both PowerShell V2 and V3:

Import-Module SQLPS -DisableNameChecking

#list services you want to start/stop here
Sservices = @("SQLBrowser", "ReportServer")
$instanceName = "KERRIGAN"

SmanagedComputer = New-Object 'Microsoft.SglServer.Management.Smo.Wni.
ManagedComputer' S$instanceName

#go through each service and toggle the state
$services | ForEach-Object {
$service = $managedComputer.Services[$]
switch ($Sservice.ServiceState)

{

"Running"

=

Write-Verbose "Stopping $ ($service.Name)"

Write-Verbose "Starting $ ($service.Name)"

{
$service.Stop ()
}
"Stopped"
{
Sservice.Start ()
}
}
}

Chapter 2

When using the Smo.Wmi . ManagedComputer object, you can simply use the Stop method
provided with the class and the start method to stop and start the service respectively.

The following list shows the properties and methods available with the Smo . Wmi .

ManagedComputer class:

Name
ManagementStateChange
Alter

ChangePassword
Equals
GetHashCode
GetType
Initialize

Pause

Refresh

Resume
SetSerwviceAccount
Start

Stop

ToString

Validate
AcceptsPause
AcceptsStop
AdvancedProperties
Dependencies
Description
DisplayName
ErrorControl
ExitCode
IsHadrEnabled
Name

Parent

PathName
ProcessId
Properties
ServiceAccount
ServiceState
StartMode
StartupParameters
State
Tvpe
Urn
UserData

ChangeHadrServicesetting

TypeName: Microsoft.5glsServer.Management. Smo. Wmi. Service

MemberType Definition

Event
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property

System. Void Alter ()
System.Void ChangeHadrServicese
System.Void ChangePassword(stri
bool Equals{System.0Object obj)
int GetHashCode()

type GetType()

boal Initialize()

System.Void Pause()

System. Void Refresh()
System.Void Resume()

System. Void SetSerwiceAccount(s
System. Void Start()

System. Void Stop()

string ToString()
Microsoft.SglServer.Management.
System. Boolean AcceptsPause {ge
System. Boolean AcceptsStop {get;
Microsoft.SglServer.Management.
System.Collections. Specialized.
System. String Description {get;
System. 5tring DisplayMame {get;}
Microsoft.SglServer.Management.
System. Int32 ExitCode {get;}
System. Boolean IsHadrEnabled {g
System. String MName {get;set;}
Microsoft.SglServer.Management.
System. String PathName {get;}
System. Int32 ProcessId {get;}
Microsoft.SglServer.Management.
System. String SerwviceAccount {g
Microsoft.SglServer.Management.
Microsoft.SglServer.Management.
System. String StartupParameters
Microsoft.SglServer.Management.
Microsoft.SglServer.Management.
Microsoft.SglServer.Management.
System.Object UserData {get;set

@]

SQL Server and PowerShell Basic Tasks

There's more...

To explore available cmdlets that can help manage and maintain services, use the
following command:

Get-Command -Name *Service* -CommandType Cmdlet -ModuleName
PowerShell

This will enumerate all cmdlets that have "Service" in the name:

CommandType Mame

Cmdlet Get-Service

Cmdlet Mew-Service

Cmdlet MNew-WebServiceProxy
Cmdlet Restart-Service
Cmdlet Resume-5Service
Cmdlet Set-Service

Cmdlet Start-Service
Cmdlet Stop-Service

Cmdlet Suspend-Service

All of these cmdlets relate to Windows services, with the exception of New-
WebServiceProxy, which is described in MSDN as a cmdlet that creates a Web service
proxy object that lets you use and manage the Web service in Windows PowerShell.

Here is a brief comparison between these service-oriented cmdlets and the methods available
for the object of Microsoft.SglServer.Management . Smo.Wmi.ManagedComputer
service, as discussed in the recipe:

Service Methods Service-related cmdlets
Start () Start-Service
Stop () Stop-Service
Continue () Resume-Service
Pause () Suspend-Service
Refresh ()

Restart-Service

Note that there isn't necessarily a one-to-one mapping between the methods of the Service
class and the service cmdlets. For example, there is a Restart-Service cmdlet, but there
isn't a Restart method.

SNED

Chapter 2

This should not raise alarm bells, though. Although it may seem that some methods or cmdlets
may be missing, it is important to note that PowerShell is a rich scripting platform and language.
In addition to its own cmdlets, it leverages the whole .NET platform. Whatever you can do in

the .NET platform, you most likely can do using PowerShell. Even if you think something is not
doable when you look at a specific class or object, there is most likely a cmdlet somewhere that
can perform that same task, or vice versa. If you still cannot find your ideal solution, you can
create your own—be it a class, a module, a cmdlet, or a function.

» The Discovering SQL Server services recipe

Listing SQL Server configuration settings

This recipe walks through how to list SQL Server configurable and non-configurable instance
settings using PowerShell.

How to do it...

1. Open the PowerShell ISE. Go to Start | Accessories | Windows PowerShell |
Windows PowerShell ISE.
2. Import the SQLPS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

To explore what members and methods are included in the SMO server, use the
following code snippet in PowerShell V3:

#Explore: get all properties available for a server object
#http://msdn.microsoft.com/en-us/library/ms212724 .aspx
$server | Get-Member | Where MemberType -eq "Property"

In PowerShell V2, you will need to slightly modify your syntax:

$server | Get-Member | Where {$.MemberType -eq "Property"}

i

SQL Server and PowerShell Basic Tasks

#The Information class lists nonconfigrable instance settings,
#like BuildNumber, OSVersion, ProductLevel etc

#Also includes settings specified during install
$server.Information.Properties |

Select Name, Value |

Format-Table -AutoSize

Name Value:
Bui TdNumber 144

Edition Enterprise Evaluation Edition (64-bit)
ErrorLogPath C:“Program Files‘\Microsoft SQL Serwver‘M550QL11.MS5QLSERVER\MSSQLYLog
HasNull5aPassword

IsCaseSensitive False
IsFullTextInstalled True
Language English {(United States)
MasterDELogPath C:\Program Files‘Microsoft SQL Server’M55QL11.MSSOLSERVER\MSSOLDATA
MasterDEPath C:\Program Files‘Microsoft SQL Server'M55QL11.MSSQLSERVER'\MSSOLYDATA
MaxPrecision 38i
NetName KERRIGAMN
05vVersion 6.1 (7601)
Phy=1calMemory 2047
Platform NT x64
Processors 1
Product Microsoft 5QL Serwver
RootDirectory C:\Program Files'Microsoft SQL Serwver‘M55QL11.MSSQLSERVER'\MSSOL
VersionMajor 11,
VersionMinor o]
VersionSstring 11.0.1440.19
Collation SQL_Latinl_General _CP1_CI_AS
EngineEdition 3;
IsClustered False
IsSinglelser False
ProductLevel CcTP
BuildC1rVersionString vd.0.30319
CollationID 8724684388
ComparisonStyle 19660

er Name KERRIGA

3. Next, let's look at the Settings class:

#The Settings lists some instance level configurable settings,
#like LoginMode, BackupDirectory etc
$server.Settings.Properties |

Select Name, Value |

Format-Table -AutoSize

=

Chapter 2

Name Value

AuditLevel Failure
BackupDirectory C:“Program Files‘Microsoft SQL Server‘MS5QL11.MSSQLSERVER\MSS0QLYBackup
DefaultFile

DefaultLog

LoginMode Miwned
MailProfile

NumberOfLogFiles -1
PerfMonMode None
TapelLoadwaitTime -1

4. The UserOptions class lists user-specific options:

#The UserOptions include options that can be set for user
#iconnections, for example

#AnsiPadding, AnsiNulls, NoCount, QuotedIdentifier
$server.UserOptions.Properties |

Select Name, Value |

Format-Table -AutoSize

Name Value
AbortOnArithmeticErrors False
AbortTransactionOnError False
Ansi1NullDefaultoff False
AnsiNullDefaultOn False
AnsiNulls False
AnsiPadding False
AnsiWarnings False
ConcatenateMNulTYieldsNull False
CursorC]lose0nCommit False
DisablebefaultConstraintCheck False
IgnoreArithmeticErrors False
ImplicitTransactions False
NoCount False
NumericRoundabort False
QuotedIdentiftier False

-

SQL Server and PowerShell Basic Tasks

5. The configuration class contains instance-specific settings, similar to what you
will see when you run sp_configure.

#The Configuration class contains instance specific settings,
#like AgentXPs, clr enabled, xp_ cmdshell

#You will normally see this when you run

#the stored procedure sp_ configure

$server.Configuration.Properties |

Select DisplayName, Description, RunValue, ConfigValue |

Format-Table -AutoSize

DisplayMame

recovery interval (min)

allow updates

user connections

locks

open objects

i1l factor (%)

dizallow results from triggers
nested triggers

server trigger recursion
remote access

default language

cross db ownership chaining
max worker threads

network packet size (B)

show advanced options

remote proc trans

2 audit mode

default full-text language
two digit vear cutoff

index create memory (KB)
priority boost

remote login timeout (s)
remote query timeout (s)
cursor threshold

set working set size
=]

Description P

Maximum recovery interval in min
Allow updates to system tables
Number of user connections allow
Number of locks for all users
Number of open database objects
Default fi11 factor percentage
Disallow returning results from
Allow triggers to be invoked wit
Allow recursion Tor server Tewvel
Allow remote access

default language

Allow cross db ownership chainin
Maximum worker threads
Network packet size
show advanced options
Create DTC transaction for remot
c?2 audit mode

default full-text language

two digit vear cutoff

Memory Tor index create sorts
Priarity boost
remote login timeout
remote guery timeout
cursor threshold

set working set size
optio

Most SQL Server settings and configurations are exposed using SMO or WMI, which allows
for these values to be programmatically retrieved.

At the core of accessing configuration details is the SMO Server class. This class exposes
a SQL Server instance's properties, some of which are configurable, while some are not.

To create an SMO Server class, you will need to know your instance name and pass it as
an argument:

#ireplace this with your instance name
"KERRIGAN"

Sserver = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

$instanceName =

=

Chapter 2

The following are the four main properties that store settings/configurations that we looked at
in this recipe:

Server property Description

Information Includes non-configurable instance settings, such
as BuildNumber, Edition, OSVersion, and
ProductLevel

It also includes settings specified during install,
for example Collation, MasterDBPath, and
MasterDBLogPath

Settings Lists some instance-level configurable settings,
such as LoginMode and BackupDirectory

UserOptions Contain options that can be set for user
connections, such as AnsiWarnings,
AnsiNulls, AnsiPadding, and NoCount

Configuration Instance-specific settings, such as AgentXPs,
remote access,clr enabled,and xp_
cmdshell, which you will normally see and set
when you use the sp_configure system stored
procedure

See also

» Check out MSDN for complete documentation on SMO classes:

http://msdn.microsoft.com/en-us/library/ms212724 .aspx

Changing SQL Server instance

configurations

This recipe walks through how to change instance configuration settings using PowerShell.

Getting ready

For this recipe, we will:

» Change FillFactor to 60 percent

» Enable SQL Server Agent

» Set minimum server memory to 500 MB
» Change authentication method to Mixed

s

SQL Server and PowerShell Basic Tasks

How to do it...

Let's change some SQL Server settings using PowerShell:

1.

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run it:

<#

run value vs config value

config value," is what the setting has been set to (but may or
may not be what SQL Server is actually running now. Some settings
don't go into effect until SQL Server has been restarted, or
until the RECONFIGURE WITH OVERRIDE option has been run, as

appropriate.) And the last column, "run value," is the value of
the setting currently in effect.
#>

#change FillFactor
$server.Configuration.FillFactor.ConfigValue = 60

#tenable SQL Server Agent extended stored procedures
$server.Configuration.AgentXPsEnabled.ConfigValue = 1

#change minimum server memory to 500MB; MB is default
$server.Configuration.MinServerMemory.ConfigValue = 500

$server.Configuration.Alter ()

#confirm changes
$server.Configuration.Properties |
Select DisplayName, ConfigValue |
Format-Table -AutoSize

Chapter 2

#change authentication mode

$server.Settings.LoginMode = [Microsoft.SglServer.Management.Smo.
ServerLoginMode] : :Mixed

Sserver.Alter ()

#confirm changes
$server.settings.LoginMode

4. Confirm the changes.
To confirm fill factor:

1. Go to Management Studio.

2. Connect to your instance.

3. Right-click on your instance and select Properties.
4

Go to Database Settings, and check whether your fill factor value has changed.

E' Server Properties - KERRIGAN
Selecta page L% Seript ~ [Help

% General

1254 Memory
% Processors Defautt index fill factor:

1% Security -
1% Connections I'E'I]' 3
e Database Settings Backup and restore

% Advanced
_ﬁlﬁ Permissions Specify how long SQL Server will wait fo

A side effect of enabling SQL Server Agent extended stored procedures is enabling SQL
Server Agent. To confirm SQL Server Agent has been enabled:

1. Go to Management Studio.
2. Connect to your instance.

7}

SQL Server and PowerShell Basic Tasks

3. Visually check whether SQL Server Agent for the instance you modified is now running.

Ohject Explorer

Comnect~ 3 3 m 7 [#] L5

ERYERRIGAN (SOL Server 11.0.1440 - KERRIGAN\Administrator)
[Databases
1 Security
[Server Objects
3 Replication
i Management
3 Integration Services
ﬁ% SQL Server Agent

To confirm Minimum server memory:

1. Go to Management Studio.
2. Right-click on your instance and select Properties.
3. Go to Memory and check that the value has changed to what you set it to.

E Server Properties - KERRIGAN

.5 Seript + Yy Help

= Memory
[Processors Server memory options
[Securty

28 Connections

[Database Settings
A Advanced

) Minimum server memary {in MB):
[Permissions

|524283[|{|'D 3:

Madmum server memaory (in ME):

2147483647 =

To confirm authentication mode:

1. Go to Management Studio.
2. Connect to your instance.

NED

3. Right-click on your instance and select Properties.

4. Go to Security and check that the instance is now SQL Server and Windows
Authentication mode.

Select a page
A General
_ﬁf‘ Memory
4 Processors

B Security

A4 Connections

_ﬁf‘ Database Settings
2 Advanced

2 Pemissions

E' Server Properties - KERRIGAN
5 Seript + % Help

Server authentication

" Windows Authentication mode

= 5L Server and Windows Authentication mode

Login auditing
i~ MNone

% Failed logins only

™ Successful logins only

™ Both failed and successful logins

Depending on what server properties you need to change, you may need to determine
which of the following classes you may need to access: Settings, UserOptions,

or Configuration.

Chapter 2

Once you have determined which class and property you want to change, you can change the

values and invoke the Alter method:

#to make Configuration changes permanent
$server.Configuration.Alter ()

#to make Settings changes permanent

Sserver.Alter ()

SQL Server and PowerShell Basic Tasks

There's more...

When you run sp_configure, you will see a result that shows both run_value and config_value
as follows:

sp_configureg|
100% = 4
] Results | e Messagesl
name I minimum | miaximum config_value I nun_valus
1 [allow updates 0 1 0 0
2 backup compression default O 1 0 0
3 clr enabled 1] 1 0 0
4 contained database authentication | 0 1 0 0
5 cross db ownership chaining O 1 0 0
& default language 1] 9955 0 0
7 filestream access level 0 2 2 2
g miae text repl size (B) -1 2147483647 | B5536 65536
9 nested triggers 1] 1 1 1
10 | remote access 0 1 3 3

There is often confusion between run_value and config_value. config_value is what value the
setting is set to. run_value is what SQL Server is currently using. Sometimes, a new value may
be set (config_value), but it isn't used by SQL Server until the instance is restarted.

» The Listing SQL Server configuration settings recipe

Searching for database objects

In this recipe, we will search for database objects based on a search string by using PowerShell.

Getting ready

We will use AdventureWorks2008R2, in this exercise, and will look for SQL Server objects
with the word "Product" in their names.

&)

Chapter 2

To get an idea of what are expecting to retrieve, run the following script in SQL Server
Management Studio:

USE AdventureWorks2008R2
GO
SELECT

*
FROM

sys.objects
WHERE

name LIKE '$Product#%'

-- filter table level objects only
AND [type] NOT IN ('C', 'D', 'PK', 'F')
ORDER BY

[typel

This will get you 23 results. Remember this number.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it. Note that the following script will work only with
PowerShell V3, because of the simplified where cmdlet usage. If you want to use
this in PowerShell V2, replace the Where syntax with the V2 variation.

SdatabaseName = "AdventureWorks2008R2"
Sdb = S$server.Databases [$SdatabaseName]

#what keyword are we looking for?
$searchString = "Product"

#create empty array, we will store results here
Sresults = @()

[ei-

SQL Server and PowerShell Basic Tasks

#now we will loop through all database SMO
#iproperties and look of objects that match
#the search string
#note we are explicitly excluding Federations, because
#this throws an error
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*"
ForEach-Object ({
Stype = $_.Name
$db. $type |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @{
"ObjectType"=$type.Replace ("Microsoft.
SglServer.Management.Smo.", "")
"ObjectName"=$.Name

}

Sresults += S$Sresult

#display results
Sresults

#texport results to csv file
$file = "C:\Temp\SearchResults.csv"
$results | Export-Csv -Path $file -NoTypeInformation

#display file contents
notepad $file

&

Your results will look like this:

ObjectType

Schemas

Tables
Tables
Tables
Tables
Tables
Tables
Tables
Tabhles
Tables
Tables
Tabhles
Tables
Tables
Tabhles
Tables
Tables

Views
Views
V1ews

StoredProcedures

UserDefinedFunctions
UserDefinedFunctions
UserDefinedFunctions

¥XmlSchemaCollections

ObjectName

Production
uspGetwWherelsedProductID
Product

ProductCategory
ProductCostHistory
ProductDescription
ProductDocument
ProductInventory
ProductListPriceHistory
ProductModel
ProductModelIllustration
ProductModelProductDescriptionCulture
ProductPhoto
ProductProductPhoto
ProductReview
ProductSubcategory
Productvendor
Special0fferProduct
ufnGetProductDealerPrice
ufnGetProductListPrice
ufnGetProductStandardCost
vProductAndDeszcription
vProductModelCatalogDescription
vProductModel Instructions
ProductDescriptionSchemaCaollects

Chapter 2

After creating our usual SMO Server object, we create an SMO database handle to our
AdventureWorks2008R2 database.

Sdatabasename = "AdventureWorks2008R2"
$db = sserver.Databases[$databasename]

We also define our search string. Our goal is to get all database objects that have the word

"Product" in their names:

#what keyword are we looking for?

$searchString = "Product"

We also create an empty array, where we can save our search results as records. This will
enable us to display our final results in a tabular fashion when we're done with our iteration.

$results = @()

SQL Server and PowerShell Basic Tasks

We will then go through all the database-related SMO properties and look for objects
that contain the keyword we're looking for. Note that the following script will work only
with PowerShell V3, because of the simplified Wwhere cmdlet usage. If you want to use
this in PowerShell V2, replace the Where syntax with the V2 variation.

#now we will loop through all database SMO
#tproperties and look of objects that match
#the search string
#note we are explicitly excluding Federations, because
#this throws an error
$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*"
ForEach-Object ({
Stype = $_.Name
$db.sStype |
Where Name -Like "+*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @f
"ObjectType"=$type.Replace ("Microsoft.SglServer.
Management.Smo.", "")
"ObjectName"=$_.Name

}

Sresults += S$Sresult

}

In our loop, we have one long line that parses and creates our result.
The first part inspects each property and checks whether the name contains our search string.

$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*"
ForEach-Object ({
Stype = $_.Name
$db.sStype |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @f
"ObjectType"=$type.Replace ("Microsoft.SglServer.
Management.Smo.", "")
"ObjectName"=$.Name

=

Chapter 2

Sresults += Sresult

}

Note that we have two conditions that we pass in the outer Where-Object cmdlets (here
simplified to Where usage, which is supported only in PowerShell V3), as follows:

» Where Definition -Like "*Smo*", because we are only looking for SMO
properties

» Where Definition -NotLike "*Federation*", because when you access
$db.Federations, an exception is thrown

The second part builds a new row for the result with two columns: ObjectType and
ObjectName. This new result is of type PSObject. Once constructed, we store this in our
Sresults array. We also strip out the substring Microsoft.SqlServer.Management .
Smo from the resulting object types, for brevity.

$db |
Get-Member -MemberType Property |
Where Definition -Like "*Smo*" |
Where Definition -NotLike "*Federation*"
ForEach-Object ({
Stype = $_.Name
$db. $type |
Where Name -Like "*$searchstring*" |
ForEach-Object {
$result = New-Object -Type PSObject -Prop @{
"ObjectType"=$type.Replace ("Microsoft.SglServer.
Management .Smo.", "")
"ObjectName"=$.Name

}

Sresults += S$Sresult

}

Lastly, we export our results to a CSV file, using the Export -Csv cmdlet, and display
in notepad:

#fexport results to csv file
$file = "C:\Temp\SearchResults.csv"
$results | Export-Csv -Path $file -NoTypeInformation

#display file contents
notepad $file

]

SQL Server and PowerShell Basic Tasks

When you inspect your results, however, you will notice two extra objects that were not captured
in our T-SQL statement in the Getting ready section. If we compare the two approaches, our
PowerShell approach is more complete. In addition to the expected 23 results, PowerShell has
also captured:

» Production—schema object

» ProductDescriptionSchemaCollection—XmlSchemaCollection object

Another way to iterate through the objects is by using the EnumObjects method of the SMO
database variable $db:

$searchString = "Product"

$db.EnumObjects () |

Where Name -Like "*$searchString+*" |
Select DatabaseObjectTypes, Name |
Format-Table -AutoSize

Yes, there is still yet another alternative. This one is longer and less flexible, but it still gets you
what you need. You can look for objects that match the search string by going through the $db
object properties one by one, like this:

#long version is to enumerate explicitly each object type
$db.Tables | Where Name -Like "*$searchstring*"

$db.StoredProcedures | Where Name -Like "*$searchstring*"
$db.Triggers | Where Name -Like "*$searchstring*"
$db.UserDefinedFunctions | Where Name -Like "*$searchstring*"
#etc

This is useful, and will be faster, if you know exactly what type of object you are looking for.

» The Exploring SMO Server objects recipe in Chapter 1

Chapter 2

Creating a database

This recipe walks through creating a database with default properties using PowerShell.

Getting ready

In this example, we are going to create a database called TestDB, and we assume that this
database does not yet exist in your instance.

For your reference, the equivalent T-SQL code for this task is:

CREATE DATABASE TestDB

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

#database TestDB with default settings
#tassumption is that this database does not yet exist
$dbName = "TestDB"

$db = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Database ($server, S$dbName)

Sdb.Create ()

#to confirm, list databases in your instance
$server.Databases |
Select Name, Status, Owner, CreateDate

&7}

SQL Server and PowerShell Basic Tasks

There are two key steps to creating a database using SMO and PowerShell: creating an SMO
Server object and creating an SMO Database object.

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

SdbName = "TestDB"

$db = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Database (S$Sserver, S$dbName)

The SMO Database constructor requires both the SMO Server handle and a database object.
The final action is to call the database object's Create method:

$db.Create ()

Many SMO objects are consistent with the methods. You will see the Create method again in
several recipes in this chapter.

Altering database properties

This recipe shows you how to change database properties, using SMO and PowerShell.

Getting ready

Create a database called TestDB by following the steps in the Creating a database recipe.
Using TestDB, we will:

» Change ANSI NULLS Enabled to False

» Change ANSI PADDING Enabled to False

» Restrict user access to RESTRICTED_USER
» Set the database to Read Only

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

Chapter 2

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run

#database
SdbName = "TestDB"

#we are going to assume db exists
Sdb = $server.Databases [$dbName]

#DatabaseOptions

#change ANSI NULLS and ANSI PADDING
$db.DatabaseOptions.AnsiNullsEnabled = $false
$db.DatabaseOptions.AnsiPaddingEnabled = $false

#Change database access
#DatabaseUserAccess enum values: multiple, restricted, single

$db.DatabaseOptions.UserAccess = [Microsoft.SglServer.Management.
Smo.DatabaseUserAccess] : :Restricted

$db.Alter ()

#some options are not available through the
#DatabaseOptions property
#so we will need to access the database object directly

#ichange compatiblity level to SQL Server 2005
#available CompatibilityLevel values are from

#Version 6.5 ('Versioné65') all the way to SQL

#Server 2012 ('VersionllO0')

#however Version80 is not a valid compatibility option
#for SQL Server 2012

$db.AutoUpdateStatisticsEnabled = Strue

$db.CompatibilityLevel = [Microsoft.SglServer.Management.Smo.
CompatibilityLevel] : :Version90
$db.Alter ()

#set to readonly
$db.DatabaseOptions.ReadOnly = S$Strue
$db.Alter ()

[}

SQL Server and PowerShell Basic Tasks
4. Confirm the changes.

To start confirming;:
1. Go to Management Studio.
2. Connect to your instance.

You will notice right away in Object Explorer that your database is grayed out and
that its status has changed to (Restricted User / Read-Only).

= |4 KERRIGAN (SQL Server 11.0.1440 - KERRIGAN\Administrator)
= [Databases
1 System Databases
|1 Database Snapshots
| J AdventureWorks2008R2
L) Test
| J TestDB (Restricted User / Read-Only)

To confirm ANSI NULLS, ANSI PADDING, and Compatibility Level:

3. Right-click on the TestDB database and select Properties.

4. Go to the Options tab, and check whether the respective options have
been changed:

Collation: SGL_Latin1_General_CP1_CI_AS |
Recovery model: IFuII j
| Compatibility level: SQL Server 2005 (30) ;l

Containment type: Mone ﬂ
(Other options:
=4l |=
E Miscellanecus -

Allow Snapshot Isalation True

ANSI NULL Default False

ANSI NULLS Enabled False

ANSI Padding Enabled False

ANSI Wamings Enabled False

Arthmetic Abort Enabled False

Concatenate Mull ields Mull False

Date Comelation Optimization Enabiad False

Is Read Committed Snapshot On False

Chapter 2

To alter database properties, you will need to create an SMO handle to your database:

#we are going to assume db exists
Ssdb = $server.Databases [$dbName]

After this, you will need to investigate which of the properties contains the setting you want to
change. For example, ANSI NULLS, ANSI WARNINGS, database access restriction options, and
Read Only are available through the DatabaseOptions property of your database object:

#DatabaseOptions

#change ANSI NULLS and ANSI PADDING
$db.DatabaseOptions.AnsiNullsEnabled = $false
$db.DatabaseOptions.AnsiPaddingEnabled = $false

#Change database access
#DatabaseUserAccess enum values: multiple, restricted, single

$db.DatabaseOptions.UserAccess = [Microsoft.SglServer.Management.Smo.
DatabaseUserAccess] : :Restricted

#set to readonly
$db.DatabaseOptions.ReadOnly = S$Strue

AutoUpdateStatisticsEnabled and CompatibilityLevel are their own properties,
directly accessible from the $db object:

$db.AutoUpdateStatisticsEnabled = Strue

$db.CompatibilityLevel = [Microsoft.SglServer.Management.Smo.
CompatibilityLevel] : :Version90

Note that for SQL Server 2012, the earliest version you can set the compatibility level to is
SQL Server 2005 (Version 90).

Once you've set the new values, you can persist the changes by invoking the Alter method
of your database object:

$db.Alter ()

Finding exactly which property the settings you are looking for reside in is half the battle, so it's
a great idea to familiarize yourself with the properties of the object you are changing. Technet
and MSDN are great resources, as are books and numerous articles and blog posts. However,
remember there is help at your fingertips. Remember that the Get -Member cmdlet is your
friend. You can invoke the Get -Member cmdlet as follows:

$db | Get-Member

SQL Server and PowerShell Basic Tasks

See also

» The Changing SQL Server instance configurations recipe

Dropping a database

This recipe shows how you can drop a database, using PowerShell and SMO.

Getting ready

This task assumes you have created a database called TestDB. If you haven't, create one by
following the steps in the Creating a database recipe.

How to do it...

The following are the steps to drop your TestDB database:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

SdbName = "TestDB"

#ineed to check if database exists, and if it does, drop it
Ssdb = $server.Databases [$SdbName]
if ($db)
{
#we will use KillDatabase instead of Drop
#Kill database will drop active connections before
#dropping the database
Sserver.KillDatabase ($dbName)

Chapter 2

To drop an SMO server or database object, you can simply invoke the Drop method. However,
if you have ever tried dropping a database before, you might have already experienced being
blocked by active connections to that database. For this reason, we chose the KillDatabase
method, which will kill active connections before dropping the database. This option is also
available in Management Studio when you drop a database from Object Explorer. When you
right-click on a database, the Delete Object window will appear. At the bottom of the window
you will find a checkbox called Close existing connections, which will do the job.

27 Delete Object

8 Senpt | - | L Help

Object to be deleted
Object Name I Object Type I Owner I Statu
: TestDB Database KER...

- P e »
Wﬁﬁgﬁuemes B T T e e

Progress

Ready ¥ Delete backup and restare history information for databases
| W' Close existing connections |

Changing a database owner

This recipe shows how to programmatically change a SQL Server database owner.

Getting ready

This task assumes you have created a database called TestDB and that a Windows account
QUERYWORKS\aterra. QUERYWORKS\aterra has been created in your test VM.

[See Appendix D, Creating a SQL Server VM.]

If you don't already have one, create a TestDB database by following the steps the Creating
a database recipe.

(75}

SQL Server and PowerShell Basic Tasks

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

#create database handle
SdbName = "TestDB"
Sdb = $server.Databases [$dbName]

#display current owner
$db.Owner

#change owner

#SetOwner requires two parameters:
#loginName and overrideIfAlreadyUser
$db.SetOwner ("QUERYWORKS\aterra", $true)
#refresh db

sdb.Refresh ()

#icheck Owner value
$db.Owner

4. Do a visual check:

Open Management Studio.
Locate the AdventureWorks2008R2 database.
Right-click and go to Properties.

N

Select Options.

7

Chapter 2

- Database Properties - TestDB

1 General
Il Files
#A Filegroups Database name: ITestDE
2 Options Owner. [QUERYWORKS'atera
2 Change Tracking
|2 Permissions ¥ Use fulltext indexing
“4 Extended Properties

Changing the database owner is a short and straightforward task in PowerShell. First, you
need to create a database handle.

The only other action required is invoking the SetOwner method of the Microsoft.
SglServer.Management . Smo.Database class, which requires two parameters:

» LoginName

» OverrideIfAlreadyUser
The OverrideIfAlreadyUser option can be set to either true or false. If setto true,
it means that the currently logged-in user already exists as a user in the target database, and

that user is dropped and re-added as owner. If set to false and the logged-in user is already
mapped to that database, the SetOwner method will produce an error.

» The Altering database properties recipe

Creating a table

This recipe shows how to create a table using PowerShell and SMO.

Getting ready

We will use the AdventureWorks2008R2 database to create a table named Student,
which has five columns. To give you a better idea of what we are trying to achieve, the
equivalent T-SQL script needed to create this table is as follows:

USE AdventureWorks2008R2
GO
CREATE TABLE [dbo] . [Student] (

SQL Server and PowerShell Basic Tasks

[StudentID] [INT] IDENTITY(1,1) NOT NULL,
[FName] [VARCHAR] (50) NULL,
[LName] [VARCHAR] (50) NOT NULL,
[DateOfBirth] [DATETIME] NULL,
[Age] AS (DATEPART (YEAR,GETDATE ()) -DATEPART (YEAR, [DateOfBirth])),
CONSTRAINT [PK Student StudentID] PRIMARY KEY CLUSTERED
(
[StudentID] ASC

GO

How to do it...

Let's create the Student table using PowerShell:

1. Open the PowerShell console by going to Start | Accessories | Windows PowerShell
| Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Next, add code to set up the database and table names and to drop the table if it
already does exist:
SdbName = "AdventureWorks2008R2"
StableName = "Student"
Sdb = $server.Databases [$dbName]
Stable = $db.Tables[StableName]

#if table exists drop
if (Stable)

{

Stable.Drop ()
}
4. Add the following script to create the table, and run it:

#table class on MSDN
#http://msdn.microsoft.com/en-us/library/ms220470.aspx

7@

Chapter 2

Stable = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Table -ArgumentList db, StableName

#column class on MSDN

#http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.column.aspx

#column 1

ScollName = "StudentID"
Stype = [Microsoft.SglServer.Management.SMO.DataTypel ::Int;
$coll = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList S$table, S$collName, Stype
Scoll.Nullable = S$false

$coll.Identity = S$true

$coll.IdentitySeed = 1
$coll.IdentityIncrement = 1
Stable.Columns.Add (Scoll)

#column 2 - nullable

S$col2Name = "FName"

Stype = [Microsoft.SglServer.Management.SMO.DataType] : :VarChar (50)
$col2 = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $col2Name, Stype
Scol2.Nullable = Strue
Stable.Columns.Add (Scol2)

#column 3 - not nullable, with default value

$col3Name = "LName"

Stype = [Microsoft.SglServer.Management.SMO.DataType] : :VarChar (50)
$col3 = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $col3Name, Stype
Scol3.Nullable = S$false
$col3.AddDefaultConstraint ("DF_Student LName") .Text = "'Doe'"

Stable.Columns.Add (Scol3)

#column 4 - nullable, with default value

Scol4Name = "DateOfBirth"

Stype = [Microsoft.SglServer.Management.SMO.DataType] : :DateTime;
$cold = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $col4Name, Stype
Scol4 .Nullable = Strue

$col4 .AddDefaultConstraint ("DF Student DateOfBirth") .Text =
"'1800-00-00""

Stable.Columns.Add (Scol4)

(77}

SQL Server and PowerShell Basic Tasks

#column 5

$col5Name = "Age"
Stype = [Microsoft.SglServer.Management.SMO.DataTypel ::Int;
$col5 = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $colS5Name, Stype
Scol5.Nullable = S$false

$col5.Computed = S$true

$col5.ComputedText = "YEAR (GETDATE()) - YEAR(DateOfBirth)";
Stable.Columns.Add (Scolb)

Stable.Create ()

5. Make studentID the primary key, as follows:

HHHHHAFHHAFH A HHAFH S H A HH A HHA S H A HH A H

#make StudentID a clustered PK
HHHHHAFHHAFH S HHAFH A S HASHHAFHHAFH A HH A H

#note this is just a "placeholder" right now for PK
#no columns are added in this step

$PK=New-Object-TypeNameMicrosoft.SglServer.Management .SMO. Index
-ArgumentList$table, "PK_Student StudentID"

SPK.IsClustered =Strue
SPK.IndexKeyType =[Microsoft.SglServer.Management.SMO.
IndexKeyTypel : :DriPrimaryKey

#identify columns part of the PK

$PKcol=New-Object-TypeNameMicrosoft.SglServer.Management .SMO.
IndexedColumn-ArgumentList$PK, ScollName

S$PK.IndexedColumns.Add ($PKcol)
$PK.Create ()

6. Do avisual check to see whether the table has been created with the correct
columns and constraints:
1. Open Management Studio.
2. Go to the AdventureWorks2008R2 database and expand Tables.
3. Expand Columns, Keys, Constraints, and Indexes.

@

Chapter 2

= X dbo.Student
= [3 Columns
¥ StudentID (PK, int, not null}
=] FMName {varchar{50), null)
=] LName {varchar(50), not null)
=] DateOfBirth (datetime, null)
i Age (Computed, int, null}
= (3 Keys
¥ PK_Student_StudentiD
= [Constraints
#=] DF_student_DateOfBirth
#5] DF_student_LName
[Triggers
B A Indexes

¥ PK_Student_StudentlD (Clustered)

To create a table, the first step is to create an SMO table object, thus:

Stable = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Table -ArgumentList $db, StableName

After this, all columns have to be defined one by one and added to the table before the Create
method of the Microsoft.SglServer.Management .SMO. Table class is invoked.

Let's take this step by step. To create a column, we first need to identify the data type we are
storing in the column and the properties of that column.

Column data types in SMO are defined in Microsoft.SglServer.Management . SMO.
DataType. Every T-SQL data type is pretty much represented in this enumeration. To use a
data type, the format should be as follows:

[Microsoft.SglServer.Management .SMO.DataType] : :DataType

To create a column, you will have to specify the table variable, the data type, and the
column name:

$collName = "StudentID"
Stype = [Microsoft.SglServer.Management.SMO.DataType] ::Int
$coll = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList Stable, S$collName, Stype

SQL Server and PowerShell Basic Tasks

Common column properties will now be accessible to your column variable. Some common
properties include:

» Nullable

» Computed

» ComputedText

» Default Constraint (by usingthe AddDefaultConstraint method)

For example:

#column 4 - nullable, with default value

$col4Name = "DateOfBirth"
Stype = [Microsoft.SglServer.Management.SMO.DataType] : :DateTime;
$col4d = New-Object -TypeName Microsoft.SglServer.Management.SMO.

Column -ArgumentList $table, $col4Name, S$Stype
$col4 .Nullable = S$true

$col4 .AddDefaultConstraint ("DF_Student DateOfBirth").Text = "'1800-00-
OOI n

There are additional properties that are exposed, depending on the data type you've chosen.
For example, [Microsoft.SglServer.Management.SMO.DataType] : : Int will allow
you to specify whether this is an identity and let you set seed and increment. [Microsoft.
SglServer.Management .SMO.DataType] : : Varchar will allow you to set length.

Once you have set the properties, you can add columns to your table, as follows:

Stable.Columns.Add ($col4)

When everything is set up, you can invoke the table's Create method:

Stable.Create()

Now, to create a primary key, you will need to create two other SMO Objects. The first one is
the Index object. For this object, you can specify what type of index this is and whether it is
clustered or nonclustered:

$PK = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Index -ArgumentList $table, "PK Student_StudentID"

SPK.IsClustered = S$true

$PK.IndexKeyType = [Microsoft.SglServer.Management.SMO.
IndexKeyType] : :DriPrimaryKey

The second object, IndexedColumn, specifies what columns are part of the index.

#identify columns part of the PK

$PKcol = New-Object -TypeName Microsoft.SglServer.Management.SMO.
IndexedColumn -ArgumentList PK, ScollName

(&)

Chapter 2

If this column is an included column, simply set the IsIncluded property of the
IndexedColumn object to true.

Once you've created all index columns, you can add them to the Index and invoke the
Create method of the Index object:

SPK.IndexedColumns.Add ($PKcol)
SPK.Create ()

You must be thinking right now that what we've just gone over is a long-winded way to create
a table. And you're thinking right. It is a more verbose way to create a table. However, keep
in mind this is just one more way to get things done. When you need to create a table and if
T-SQL is a faster way to do it, go for it. However, knowing how to do it in PowerShell and SMO
is just one more tool in your arsenal for those scenarios where you might need to create the
tables dynamically or more flexibly—for example, if you need to import the definition stored in
Excel, CSV, or XML files from multiple users.

» The Creating an index recipe
» Check out the complete list of SMO DataType classes from MSDN:

http://msdn.microsoft.com/en-us/library/microsoft.sqglserver.
management .smo.datatype.aspx

Creating a view

This recipe shows how to create a view using PowerShell and SMO.

Getting ready

We will use the Person. Person table in the AdventureWorks2008R2 database for
this recipe.

To give you an idea of what we are attempting to create in this recipe, this is the
T-SQL equivalent:

CREATE VIEW dbo.vwVCPerson
AS
SELECT

TOP 100
BusinessEntityID,
LastName,
FirstName

s

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.datatype.aspx

SQL Server and PowerShell Basic Tasks

FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
GO

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQLPS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases [$dbName]
SviewName = "vwVCPerson"

Sview = $db.Views [SviewName]

#if view exists, drop it
if (sview)

{

$view.Drop ()

Sview = New-Object -TypeName Microsoft.SglServer.Management.SMO.
View -ArgumentList db, SviewName, "dbo"

#TextMode = false meaning we are not
#going to explicitly write the CREATE VIEW header
Sview.TextMode = S$false

Sview.TextBody @"

[

Chapter 2

SELECT
TOP 100
BusinessEntityID,
LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@

Sview.Create ()

Test the view from PowerShell by running the following code:

Sresult = Invoke-Sglcmd ~

-Query "SELECT * FROM vwVCPerson" ~
-ServerInstance "$instanceName" ~
-Database $dbName

$result | Format-Table -AutoSize

Do a visual check to see whether the view has been created. Open Management
Studio, go to the AdventureWorks2008R2 database, and expand Views.

= | KERRIGAN (SQL Server 11.0.1440 - KERRIGAN \Administrator)
= [Databases
[System Databases
[Database Snapshots
= | J AdventureWorks2008R2
[Database Diagrams
[Tables

[d System Views /

dbo, vw\VCPerson

HumanResources, vEmployes
HumanResources, vEmployeeDepartment

SQL Server and PowerShell Basic Tasks

To create a view using SMO and PowerShell, you first need to create an SMO View variable,
which requires three parameters: database handle, view name, and schema.

Sview = New-Object -TypeName Microsoft.SglServer.Management.SMO.View
-ArgumentList $db, $viewName, "dbo"

You can optionally set the view owner:
$view.Owner = "QUERYWORKS\aterra"

The crux of the view creation is with the view definition. You have the option here of setting
the TextMode property to either true or false.

Sview.TextMode = S$false
Sview.TextBody @"
SELECT

TOP 100
BusinessEntityID,

LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@

If you set the TextMode property to false, it means you are letting SMO construct the view
header for you:

Sview.TextMode = S$false

If you set the TextMode property to true, it means you have to define the view's
TextHeader property:

Sview.TextMode = Strue
Sview.TextHeader = "CREATE VIEW dbo.vwVCPerson AS "

When all the pieces are in place, you can invoke the view's Create method:

Sview.Create ()

Chapter 2

There's more...

When creating database objects such as views, stored procedures, or functions, you are
often required to write blocks of code for the object definition. Although you can technically
put all these in one line, it is best to put them in a multiline format for readability.

To embed these blocks of code in PowerShell, you will need to use a here-string.
A here-string starts with @" followed by nothing else, and is ended by "@, which
must be the first two character in its own line:

$view.TextBody = @"
SELECT
TOP 100
BusinessEntityID,
LastName,
FirstName
FROM
Person.Person
WHERE
PersonType = 'IN'
ORDER BY
LastName
"@

This construction might remind you a little bit of a C-style comment, which starts with /* and
ends with */, albeit using different characters.

Creating a stored procedure

This recipe shows how to create an encrypted stored procedure using SMO and PowerShell.

Getting ready

The T-SQL equivalent of the encrypted stored procedure we are about to recreate in
PowerShell is as follows:

CREATE PROCEDURE [dbo] . [uspGetPersonByLastName] @LastName [varchar]
(50)

WITH ENCRYPTION

AS

&1

SQL Server and PowerShell Basic Tasks

SELECT
TOP 10
BusinessEntityID,
LastName

FROM
Person.Person

WHERE
LastName = @LastName

How to do it...

Follow these steps to create the uspGetPersonByLastName stored procedure
using PowerShell:

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases [$dbName]

#storedProcedure class on MSDN:

#http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.storedprocedure.aspx

$sprocName = "uspGetPersonByLastName"
$sproc = $db.StoredProcedures [$sprocName]
#if stored procedure exists, drop it

if ($sproc)

{

$sproc.Drop ()

~[ee]

Chapter 2

$sproc = New-Object -TypeName Microsoft.SglServer.Management.SMO.
StoredProcedure -ArgumentList db, SsprocName

#TextMode = false means stored procedure header

#is not editable as text

#otherwise our text will contain the CREATE PROC block
$sproc.TextMode = $false

$sproc.IsEncrypted = S$true

Sparamtype = [Microsoft.SglServer.Management.SMO.
Datatype] : :VarChar (50) ;

$Sparam = New-Object -TypeName Microsoft.SglServer.Management.
SMO.StoredProcedureParameter -ArgumentList S$sproc,"@
LastName", $Sparamtype

$sproc.Parameters.Add (Sparam)

#Set the TextBody property to define the stored procedure.
$sproc.TextBody = @"
SELECT
TOP 10
BusinessEntityID,
LastName
FROM
Person.Person
WHERE
LastName = @LastName
"@

Create the stored procedure on the instance of SQL Server.
$sproc.Create ()

#if later on you need to change properties, can use the Alter
method

Do a visual check to see whether the stored procedure has been created.
1. Open Management Studio.
2. Go to the AdventureWorks2008R2 database.

7}

SQL Server and PowerShell Basic Tasks

3. Expand Programmability | Stored Procedures.
4. Check that the stored procedure is there.

= | J AdventureWorks2008R2
1 Database Diagrams
[Tahles
& LA Views
L Synonyms
= 3 Programmability
= [Stored Procedures
[System Stored Procedures
dbo.uspGetBillofMaterials
dbo.uspGetEmployeeManagers
dl:uu.uspGeﬂ*"IanagerEmpluyeesK‘
E2 dbo.uspGetPersonBylastiame
dbo.uspGetWherelsedProductID
dbo.uspLogError
dbo.uspPrintError
dbo.uspSearchCandidateR esumes
HumanResources, usplpdateEmployeeHireInfo
HumanResources, usplpdateEmployeelogin
HumanResources, usplpdateEmployeePersonallnfo

FEHHHEHEEHBEBRBH

5. Test the stored procedure from PowerShell. In the same session, type the following
code and run it:

$lastName = "Abercrombie"

Sresult = Invoke-Sglcmd ~

-Query "EXEC uspGetPersonByLastName @LastName="'S$SLastName™ '"
-ServerInstance "$instanceName"

-Database $dbName

$result | Format-Table -AutoSize

To create a stored procedure, you first need to initialize an SMO StoredProcedure object.
When creating this object, you need to pass the database handle and the stored procedure
name as parameters:

Ssproc = New-Object -TypeName Microsoft.SglServer.Management.SMO.
StoredProcedure -ArgumentList $db, $sprocName

You can then set some properties of the stored procedure object, such as whether it's
encrypted or not:

Ssproc.IsEncrypted = Strue

(e

Chapter 2

If you specify TextMode = true, you will need to create the stored procedure header yourself.
If you have parameters, these will have to be defined in your text header, for example:

$sproc.TextMode = $true

$sproc.TextHeader = @"

CREATE PROCEDURE [dbo] . [uspGetPersonByLastName]
@LastName [varchar] (50)

AS

"@

Otherwise, if you set TextMode = $false, you are technically allowing PowerShell

to autogenerate this header for you, based on the other properties and parameters you
have set. You will also have to create the parameter objects one-by-one and add them
to the stored procedure.

$sproc.TextMode = $false

Sparamtype = [Microsoft.SglServer.Management.SMO.
Datatype] : :VarChar (50) ;

Sparam = New-Object -TypeName Microsoft.SglServer.Management.SMO.
StoredProcedureParameter -ArgumentList $sproc, "@LastName", $Sparamtype

$sproc.Parameters.Add ($param)

When creating the stored procedure, use a here-string as you set the definition of the
TextBody property of the stored procedure object:

$sproc.TextBody = @"
SELECT
TOP 10
BusinessEntityID,
LastName
FROM
Person.Person
WHERE
LastName = @LastName
"e@

Once the header, definition, and properties of the stored procedure are in place, you can
invoke the Create method, which sends the CREATEPROC statement to SQL Server and
creates the stored procedure.

Create the stored procedure on the instance of SQL Server.
$Ssproc.Create ()

]

SQL Server and PowerShell Basic Tasks

Creating a trigger

This recipe demonstrates how to programmatically create a trigger in SQL Server using SMO
and PowerShell.

Getting ready

For this recipe, we will use the Person. Person table in the AdventureWorks2008R2
database. We will create a trivial AFTER trigger that merely displays values from the inserted
and deleted records upon firing.

The following is the T-SQL equivalent of what we are going to accomplish programmatically in
this section:

CREATE TRIGGER [Person].[tr u Person]
ON [Person] . [Person]

AFTER UPDATE

AS

SELECT
GETDATE () AS UpdatedOn,
SYSTEM USER AS UpdatedBy,
i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,
d.FirstName AS OldFirstName
FROM
inserted i
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID

How to do it...

Let's follow these steps to create an AFTER trigger in PowerShell:
1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"

5]

Chapter 2

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases [$dbName]
StableName = "Person"
$schemaName = "Person"

#get a handle to the Person.Person table
$table = $db.Tables |
Where Schema -Like "$schemaName" |
Where Name -Like "StableName"

$triggerName = "tr u Person";
#note here we need to check triggers attached to table
Strigger = S$Stable.Triggers [$StriggerName]

#if trigger exists, drop it
if ($trigger)

{

Strigger.Drop ()

Strigger = New-Object -TypeName Microsoft.SglServer.Management.
SMO.Trigger -ArgumentList $table, $triggerName

Strigger.TextMode = $false

#this is just an update trigger
Strigger.Insert = $false
Strigger.Update = Strue
Strigger.Delete = $false

#3 options for ActivationOrder: First, Last, None

Strigger.InsertOrder = [Microsoft.SglServer.Management.SMO.Agent.
ActivationOrder] : :None

Strigger.ImplementationType = [Microsoft.SglServer.Management.SMO.
ImplementationTypel : : TransactSqgl

#simple example
Strigger.TextBody = @"
SELECT
GETDATE () AS UpdatedOn,
SYSTEM_USER AS UpdatedBy,

i

SQL Server and PowerShell Basic Tasks

i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,

d.FirstName AS OldFirstName
FROM

inserted 1
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID

"@

Strigger.Create ()

Do a visual check to see whether the stored procedure has been created. Open
Management Studio.

= [Person.Person
[Columns
H [3 Keys
[[d Constraints
=
[F] iuPerson
[Z] tr_u_Person
[Indexes

Test the stored procedure using PowerShell:

SfirstName = "Frankk"
Sresult = Invoke-Sglcmd ~

-Query "UPDATE Person.Person SET FirstName = ~'S$firstName™' WHERE
BusinessEntityID = 2081 " °

-ServerInstance "$instanceName" °
-Database $dbName

$result | Format-Table -AutoSize

Your result should look similar to the following;:

Updatedon UpdatedBy

NewLastName NewFirstName OldLastName OldFirstName

[

Chapter 2

The code for this section is quite long, so we will break it down here.

To create a trigger, you need to create a reference to both the instance and the database
first. This is something we have done for most of the recipes in this chapter, in case you
have skipped the previous recipes.

A trigger is bound to a table or view. You will need to create a variable that points to the
table you want the trigger to attach to:

StableName = "Person"
SschemaName = "Person"

$table = $db.Tables |
Where Schema -Like "$schemaName" |
Where Name -Like "StableName"

For purposes of this recipe, if the trigger exists, we will drop it.

Strigger = S$table.Triggers [$StriggerName]

#if trigger exists, drop it
if ($trigger)

{

Strigger.Drop ()

}
Next, you need to create an SMO Trigger object:

Strigger = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Trigger -ArgumentList $table, $triggerName

Next, set the TextMode property. If set to true, it means you have to define the trigger
header text yourself. Otherwise, SMO will automatically generate it for you.

Strigger.TextMode = $false

You will also need to define what type of DML trigger this is. Your options are insert,
update, and/or delete triggers. Our example is just an update trigger.

#this is just an update trigger
Strigger.Insert = $false
Strigger.Update = S$Strue
Strigger.Delete = $false

SQL Server and PowerShell Basic Tasks

You can also optionally define the trigger order. By default, there is no guarantee in what order
the triggers will be run by SQL Server, but you have the option to set it to First or Last. In
our example, we leave it at the default value, but we still explicitly define it for readability.

#3 options for ActivationOrder: First, Last, None

Strigger.InsertOrder = [Microsoft.SglServer.Management.SMO.Agent.
ActivationOrder] : :None

Our trigger is a Transact-SQL trigger. SQL Server SMO also supports SQLCLR triggers.

Strigger.ImplementationType = [Microsoft.SglServer.Management.SMO.
ImplementationTypel] : : TransactSqgl

To specify the trigger definition, you can set the value of the trigger's TextBody property. You
can use a here-string to assign the trigger code block to the TextBody property:

#simple example
Strigger.TextBody = @"
SELECT
GETDATE () AS UpdatedOn,
SYSTEM USER AS UpdatedBy,
i.LastName AS NewLastName,
i.FirstName AS NewFirstName,
d.LastName AS OldLastName,
d.FirstName AS OldFirstName
FROM
inserted i
INNER JOIN deleted d
ON i.BusinessEntityID = d.BusinessEntityID

ll@
When ready, invoke the Create () method of the trigger.

Strigger.Create ()

=

Chapter 2

Creating an index

This recipe demonstrates how to create a non-clustered index with an included column using
PowerShell and SMO.

Getting ready

We will use the Person.Person table in the AdventureWorks2008R2 database. We will
create a non-clustered index on FirstName, LastName, and include MiddleName. The
T-SQL equivalent of this task is:

CREATE NONCLUSTERED INDEX [idxLastNameFirstName]
ON [Person] . [Person]
(
[LastName] ASC,
[FirstName] ASC
)
INCLUDE ([MiddleNamel])
GO

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name
SinstanceName = "KERRIGAN"
$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.

Server -ArgumentList $instanceName
3. Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases[$dbName]

StableName = "Person"
S$gchemaName = "Person"

$table = $db.Tables |
Where Schema -Like "$schemaName"

[55]-

SQL Server and PowerShell Basic Tasks

Where Name -Like "StableName"

S$indexName = "idxLastNameFirstName"
$index = Stable.Indexes [$SindexName]
#if stored procedure exists, drop it
if ($index)

{

$index.Drop ()

$index = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Index -ArgumentList $table, $indexName

#first index column, by default sorted ascending

$idxColl = New-Object -TypeName Microsoft.SglServer.Management.
SMO. IndexedColumn -ArgumentList S$index, "LastName", S$false

$index.IndexedColumns.Add ($idxColl)

#second index column, by default sorted ascending

$idxCol2 = New-Object -TypeName Microsoft.SglServer.Management.
SMO. IndexedColumn -ArgumentList S$index, "FirstName", S$false

$index.IndexedColumns.Add ($idxCol2)

#included column

$inclColl = New-Object -TypeName Microsoft.SglServer.Management.
SMO. IndexedColumn -ArgumentList S$index, "MiddleName"

$inclColl.IsIncluded = S$Strue
$index.IndexedColumns.Add ($SinclColl)

#Set the index properties.

<#

None - no constraint

DriPrimaryKey - primary key

DriUniqueKey - unique constraint

#>

$index.IndexKeyType = [Microsoft.SglServer.Management.SMO.
IndexKeyType] : :None

$index.IsClustered = S$false

$index.FillFactor = 70

#Create the index on the instance of SQL Server.
$index.Create ()

5]

Chapter 2

4. Do a visual check to see whether the stored procedure has been created. Open
Management Studio:

= = Person.Person
3 Columns
[Keys
[Constraints
3 Triggers
= [Indexes

AK_Person_rowaguid (Unigue, Mon-Clustered) /
iduLastMameFirstiame (Mon-Unique, Mon-Clustered)

I¥_Person_LastName_FirstMame_MiddleMame (Mon-Unique, Mon-Clustered)
PK._Person_BusinessEntityID (Clustered)

PXML_Person_AddContact (Primary XML)

F¥XML_Person_Demographics (Primary XML)
¥MLPATH_Person_Demographics (Secondary XML, Path)

¥MLPROPERTY _Person_Demoaraphics (Secondary XML, Property)
¥MLVALUE_Person_Demographics (Secondary XML, Value)

The first step to creating an index is to create an SMO index object, which requires both the
table/view handle and the index name:

e e e He Hewld e e He

$index = New-Object -TypeName Microsoft.SglServer.Management.SMO.
Index -ArgumentList $table, $indexName

The next step is to identify all index columns using the IndexedColumn property of the
Microsoft.SglServer.Management .SMO. Index class:

#first index column

$idxColl = New-Object -TypeName Microsoft.SglServer.Management.SMO.
IndexedColumn -ArgumentList $index, "LastName", $false; #sort asc
$index. IndexedColumns.Add ($idxColl)

#second index column

$idxCol2 = New-Object -TypeName Microsoft.SglServer.Management.SMO.
IndexedColumn -ArgumentList $index, "FirstName", $false; #sort asc
$index. IndexedColumns.Add ($idxCol2)

Optionally, you can add included columns, in other words, columns that "tag along" with the
index but are not part of the indexed columns:

#included column

$inclColl = New-Object -TypeName Microsoft.SglServer.Management.SMO.
IndexedColumn -ArgumentList $index, "MiddleName"
$inclColl.IsIncluded = S$true

$index.IndexedColumns.Add ($inclColl)

o7}

SQL Server and PowerShell Basic Tasks

The type of the index can be specified using the IndexKeyType property of the Microsoft.
SglServer.Management . SMO. IndexedColumn class, which accepts three possible values:
» None: Non-unique
» DriPrimaryKey: Primary key
» DriUniqueKey: Unique key

Additional properties can also be set, including FillFactor, and whether this key is
clustered or not:

$index.IndexKeyType = [Microsoft.SglServer.Management.SMO.
IndexKeyType] : :None

$index.IsClustered = $false

$index.FillFactor = 70

When all properties are set, invoke the Create method of the SMO index object.

#Create the index on the instance of SQL Server.
Sindex.Create ()

The SMO Index object also supports different kinds of indexes:

Index Type What to set

Filtered HasFilter
FilterDefinition

FullText IsFullTextKey = strue

XML IsXMLIndex = Strue

Spatial IsSpatialIndex = Strue

To get more information about index options, check out the MSDN documentation on
SMO indexes:

http://msdn.microsoft.com/en-us/library/microsoft.sglserver.
management . smo.index.aspx

See also

» The Creating a table recipe

5]

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.index.aspx

Chapter 2

Executing a query / SQL script

This recipe shows how you can execute either a hardcoded query or a SQL script,
from PowerShell.

Getting ready

Create a file in your C: \ Temp folder called SampleScript.sqgl. This should contain:

SELECT *
FROM Person.Person

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#replace this with your instance name

$instanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases[$dbName]

#execute a passthrough query, and export to a CSV file
Invoke-Sglcmd ~

-Query "SELECT * FROM Person.Person" °

-ServerInstance "$instanceName" ~

-Database $dbName |

Export-Csv -LiteralPath "C:\Temp\ResultsFromPassThrough.csv"
-NoTypeInformation

#execute the SampleScript.sqgl, and display results to screen
Invoke-SglCmd ~

-InputFile "C:\Temp\SampleScript.sqgl"
-ServerInstance "$instanceName"
-Database $dbName |

Select FirstName, LastName, ModifiedDate |
Format-Table

<~

SQL Server and PowerShell Basic Tasks

Start warming up to the Invoke-Sqglcmd cmdlet. We will be using it a lot in this book.

As the name suggests, this cmdlet allows you to run T-SQL code or scripts and commands
supported by the SQLCMD utility. It also allows you to run XQuery code. Invoke-Sglcmd is
your all-purpose SQL utility cmdlet.

To get more information about Invoke-Sqglcmd, use the Get -Help cmdlet

Get-Help Invoke-Sglcmd -Full

In this recipe, we looked at two ways of using Invoke-Sqglcmd. The first is by specifying a
query to run. For this, you should use the -Query option:

#texecute a passthrough query, and export to a CSV file
Invoke-Sglcmd ~

-Query "SELECT * FROM Person.Person"

-ServerInstance "$instanceName"

-Database $dbName |

Export-Csv -LiteralPath "C:\Temp\ResultsFromPassThrough.csv"
-NoTypeInformation

For the second way, which requires running a SQL Script, you need to specify the
—-InputFile switch:

#texecute the SampleScript.sgl, and display results to screen
Invoke-SglCmd ~

-InputFile "C:\Temp\SampleScript.sqgl" °

-ServerInstance "$instanceName"

-Database $dbName |

Select FirstName, LastName, ModifiedDate |

Format-Table

Performing bulk export using Invoke-Sqlcmd

This recipe demonstrates how to export contents of a table to a CSV file using PowerShell and
the Invoke-Sglcemd cmdlet.

Getting ready

Make sure you have access to the AdventureWorks2008R2 database. We will use the
Person.Person table.

Create a C: \Temp folder, if you don't already have one on your system.

100

Chapter 2

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.
2. Import the SQL.PS module, and create a new SMO Server object:

#import SQL Server module
Import-Module SQLPS -DisableNameChecking

#ireplace this with your instance name
SinstanceName = "KERRIGAN"

$server = New-Object -TypeName Microsoft.SglServer.Management.Smo.
Server -ArgumentList $instanceName

3. Add the following script and run it:

#database handle
SdbName = "AdventureWorks2008R2"
Sdb = $server.Databases [$dbName]

#texport file name

Sexportfile = "C:\Temp\Person Person.csv"
Squery = @"
SELECT
*
FROM

Person.Person
"@
Invoke-Sglcmd -Query $query -ServerInstance "$instanceName"
-Database $dbName |

Export-Csv -LiteralPath $exportfile -NoTypeInformation

In this recipe, we export the results of a query to a CSV file. There are two core parts of the
export approach in this recipe.

The first part is executing the query, and for this, we use the Invoke-Sglcmd cmdlet. We
specify the instance and database and send a query to SQL Server through this cmdlet:

Invoke-Sglcmd -Query $query -ServerInstance "$instanceName" -Database
$dbName |

Export-Csv -LiteralPath $exportfile -NoTypeInformation

SQL Server and PowerShell Basic Tasks

The second part is piping the results to the Export -Csv cmdlet and specifying the file in
which the results are supposed to be stored. We also specify -NoTypeInformation, SO
the cmdlet will omit the #TYPE .NET information type as the first line in the file:

Invoke-Sglcmd -Query S$query -ServerInstance "S$instanceName" -Database
$dbName |

Export-Csv -LiteralPath $exportfile -NoTypeInformation

See also

» The Executing a query / SQL script recipe

Performing bulk export using bcp

This recipe demonstrates how to export contents of a table to a CSV file using PowerShell
and bep.

Getting ready

Make sure you have access to the AdventureWorks2008R2 database. We will export the
Person.Person table to a timestamped text file delimited by a pipe (|).

Create a C: \Temp\Exports folder, if you don't already have it on your system.

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Add the following script and run the following code:

Sserver = "KERRIGAN"
Stable = "AdventureWorks2008R2.Person.Person"
$curdate = Get-Date -Format "yyyy-MM-dd hmmtt"

$foldername = "C:\Temp\Exports\"

#format file name
Sformatfilename = "$(Stable) $(Scurdate) .fmt"

#export file name
Sexportfilename = "$($table)_ $(sScurdate) .csv"

$destination exportfilename = "$($foldername)$ (Sexportfilename)"

102

Chapter 2

$destination formatfilename = "$($foldername)$ ($Sformatfilename)"

#command to generate format file

Scmdformatfile = "bcp $Stable format nul -T -c -t \"|‘" -r “"\n "
-f ""$($destination formatfilename) ™" -S$($server)"

#icommand to generate the export file

$cmdexport = "bcp $(Stable) out “"$(Sdestination exportfilename) ~"
-S$(sserver) -T -f “"$Sdestination formatfilename™""
<#

Scmdformatfile gives you something like this:

bcp AdventureWorks2008R2.Person.Person format nul -T -c -t "|" -r
"\n" -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person 2011-
12-27 913PM.fmt" -S KERRIGAN

$cmdexport gives you something like this:

becp AdventureWorks2008R2.Person.Person out "C:\Temp\Exports)\
AdventureWorks2008R2.Person.Person 2011-12-27 913PM.csv" -S
KERRIGAN -T -c -f "C:\Temp\Exports\AdventureWorks2008R2.Per

son.Person 2011-12-27 913PM.fmt"
#>

#run the format file command
Invoke-Expression $cmdformatfile

#delay 1 sec, give server some time to generate the format file
#sleep helps us avoid race conditions
Start-Sleep -s 1

#run the export command
Invoke-Expression $cmdexport

#icheck the folder for generated file
explorer.exe $foldername

Using SQL Server's bcp command is often the faster way to export records out of SQL Server.
It is also often preferred, because bep offers flexibility in the export format.

The default export format of bcp uses a tab (\t) as a field delimiter and a carriage return
newline character (\r\n) as a row delimiter. If you want to change this, you will need to
create and use a format file that specifies how you want the export to be formatted.

SQL Server and PowerShell Basic Tasks
In our recipe, we first timestamp both the format file and then export file names.

$curdate = Get-Date -Format "yyyy-MM-dd hmmtt"
$foldername = "C:\Temp\Exports\"

#format file name
S$formatfilename = "$($table) $($Scurdate) .fmt"
#export file name
Sexportfilename = "$($table) $(Scurdate) .csv"

$destination exportfilename = "$($foldername)$ (Sexportfilename)"
$destination formatfilename

"S(sfoldername) S (Sformatfilename) "
We then construct the string that will generate the format file as follows:

#command to generate the export file
Scmdexport = "bcp $(Stable) out “"$($destination exportfilename) ™"
-S$ ($server) -T -f “"Sdestination formatfilename™""

Note that because the actual command requires double quotes, when we construct the
command, we need to escape the double quote within the command with a backtick (~).

This command that is constructed should be similar to the following:

bep AdventureWorks2008R2.Person.Person format nul -T -c -t "|" -r
"\n" -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person 2011-12-
27_913PM.fmt" -SKERRIGAN

We also construct the command that will export the records using the format file we
just created:

#command to generate the export file
Scmdexport = "bcp $(Stable) out “"$($destination exportfilename) ™"
-S$ ($server) -T -f “"Sdestination formatfilename™""

This will give us something similar to the following;:

bcp AdventureWorks2008R2.Person.Person out "C:\Temp\Exports)\
AdventureWorks2008R2.Person.Person_ 2011-12-27_913PM.csv" -SKERRIGAN
-T -f "C:\Temp\Exports\AdventureWorks2008R2.Person.Person 2011-12-
27 _913PM.fmt"

When the strings containing the commands are complete, we can execute the command using
the Invoke-Expression cmdlet. We run the format file creation command first, and then use
the Sstart-Sleep cmdlet to pause for 1 second, to ensure the format file has been created
first, before we invoke the command to do the actual export.

Chapter 2

#run the format file command
Invoke-Expression $cmdformatfile

#delay 1 sec, give server some time to generate
#the format file

#sleep helps us avoid race conditions
Start-Sleep -s 1

#run the export command
Invoke-Expression $cmdexport

If we don't wait, there will be a bigger chance for all the commands to be executed really fast,
and the command to export will run before the format file has been generated. This will lead
to an error, because the bcp command will not be able to find the format file.

Lastly, we just open up Windows Explorer, so we can inspect the files we generated.

#icheck the folder for generated file
explorer.exe $foldername

See also

» The Performing bulk export using Invoke-Sqlcmd recipe

» Read more about bcp format file options at http://msdn.microsoft.com/en-
us/library/ms191516.aspx.

Performing bulk import using BULK INSERT

This recipe will walk you through importing contents of a CSV file to SQL Server using PowerShell
and BULK INSERT.

Getting ready

To do a test import, we will first need to create a Person table similar to the Person.Person
table from the AdventureWorks2008R2 database, with some slight modifications.

We will create this in the Test schema, and we will remove some of the constraints and keep
this table as simple and independent as we can.

To create the table that we need for this exercise, open up Management Studio and run the
following code:

CREATE SCHEMA [Test]
GO

http://msdn.microsoft.com/en-us/library/ms191516.aspx

SQL Server and PowerShell Basic Tasks

CREATE TABLE [Test]. [Person] (

[BusinessEntityID] [int] NOT NULL PRIMARY KEY,
[PersonType] [nchar] (2) NOT NULL,

[NameStyle] [dbo] . [NameStyle] NOT NULL,
[Title] [nvarchar] (8) NULL,

[FirstName] [dbo] . [Name] NOT NULL,

[MiddleName] [dbo] . [Name] NULL,

[LastName] [dbo] . [Name] NOT NULL,

[Suffix] [nvarchar] (10) NULL,

[EmailPromotion] [int] NOT NULL,
[AdditionalContactInfo] [xml] NULL,
[Demographics] [xml] NULL,

[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[ModifiedDate] [datetime] NOT NULL

GO

For this recipe, we will import a file called AdventureWorks2008R2.Person.Person.csv,

which

is provided with the downloadable materials from the Packt site. Save this in the folder

C:\Temp\Exports.

Alternatively, create a CSV file, as mentioned in the Performing bulk export using bcp recipe,
and replace the filename reference in this recipe with the filename you generate.

How to do it...

1.

106

Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

Let's add some helper functions first. Type the following and execute it:
Import-Module SQLPS -DisableNameChecking

function Import-Person {

<#
.SYNOPSIS
Very simple function to get number
of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sglmusings.com
#>

param([string] SinstanceName, [string] $dbName)

Chapter 2

Squery = @"
TRUNCATE TABLE Test.Person
GO

BULK INSERT AdventureWorks2008R2.Test.Person
FROM 'C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv'
WITH
(
FIELDTERMINATOR ='|',
ROWTERMINATOR ='\n'
)
SELECT COUNT (*) AS NumRecords
FROM AdventureWorks2008R2.Test.Person
"@;

#check number of records
Invoke-Sglcmd -Query $Squery ~
-ServerInstance "$instanceName"
-Database $dbName

}
3. Now let's invoke the function in the same session, as follows:

SinstanceName = "KERRIGAN"
SdbName = "AdventureWorks2008R2"
Import-Person $instanceName $dbName

Importing records from a CSV or text file into a SQL Server table using the BULK INSERT
command will require constructing the BULK INSERT T-SQL statement and executing this
statement using the Invoke-Sglcmd cmdlet:

Invoke-Sglcmd -Query Squery

-ServerInstance "$instanceName"
-Database $dbName

However, we have done things a little bit differently than in our previous recipes. In this recipe,
we first created a function that encapsulates all the core import tasks.

To create a function, you first need to create a function header:
function Import-Person {

The function header starts with the keyword function and is then followed by the function
name in the format verb-noun. The body of the function is encapsulated by opening and
closing curly braces { }.

SQL Server and PowerShell Basic Tasks

Right after the function header, we also create a comment-based help header comment.

<#
.SYNOPSIS
Very simple function to get number of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sglmusings.com
#>

Block comments in PowerShell start with <# and end with #>. In addition, this is a special
type of block comment that allows this function's comments to be displayed in a Get-Help
cmdlet. We now type:

Get-Help Import-Person

This will provide output similar to the help you get for any other cmdlet:

PS C:hUsershAdministrator> Get-Help Import-Person

NAME
Import-Persan

SYNOPSIS
Very simple function to get number
of records in Test.Person

SYNTAX
Import-Person [[-instanceMame] <5tring=] [[-dbName] <String=] [<CommonParameters=]

DESCRIPTION

RELATED LINKS
http://www.sqlmusings. com

REMARKS
To see the examples, type: "get-help Import-Person -examples"
For more information, type: "get-help Import-Person -detailed”.
For technical information, type: "get-help Import-Person -full”™.

After the function header and comment come the parameters. Our Import -Person function
accepts two parameters: instance name and database name.

param([string] SinstanceName, [string] $dbName)

108

Chapter 2

Following our parameter definition is the function definition. We start by creating a here-string,
which contains our T-SQL statement:

Squery = @"
TRUNCATE TABLE Test.Person
GO

BULK INSERT AdventureWorks2008R2.Test.Person
FROM 'C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv'
WITH
(
FIELDTERMINATOR ='|',
ROWTERMINATOR ='\n'
)
SELECT COUNT (*) AS NumRecords
FROM AdventureWorks2008R2.Test.Person
n@;

After our query is constructed, we pass it to the Invoke-Sglcmd cmdlet, which in turn sends
and executes it in our SQL Server instance.

Invoke-Sglcmd -Query Squery
-ServerInstance "$instanceName"
-Database $dbName

Functions in PowerShell are local-scoped by default, but when run through the ISE maintain
a global scope. In our recipe, once you run the first part of the script that has the function
definition, this function can be invoked at any time in the current session. We can see that
the function simplifies importing the records and all that we need is the instance name, the
database name, and the Import-Person function.

SinstanceName = "KERRIGAN"
SdbName = "AdventureWorks2008R2"
Import-Person $instanceName $dbName

If you are using the shell and you want this function to persist globally across different scopes,
save the script as a . ps1 file and dot source it. Another way is to prepend the function name
with global:

function global:Import-Person {

» The Executing a query / SQL script recipe
» The Performing bulk import using bcp recipe

SQL Server and PowerShell Basic Tasks

Performing bulk import using bcp

This recipe will walk you through the process of importing the contents of a CSV file to SQL
Server using PowerShell and bep.

Getting ready

To do a test import, let's first create a Person table similar to the Person. Person table from
the AdventureWorks2008R2 database, with some slight modifications. We will create this in
the Test schema, and we will remove some of the constraints and keep this table as simple
and independent as we can.

If Test . Person does not yet exist in your environment, let's create it. Open up Management
Studio, and run the following code:

CREATE SCHEMA [Test]

GO

CREATE TABLE [Test]. [Person] (
[BusinessEntityID] [int] NOT NULL PRIMARY KEY,
[PersonType] [nchar] (2) NOT NULL,
[NameStyle] [dbo] . [NameStyle] NOT NULL,
[Title] [nvarchar] (8) NULL,
[FirstName] [dbo] . [Name] NOT NULL,
[MiddleName] [dbo] . [Name] NULL,
[LastName] [dbo] . [Name] NOT NULL,
[Suffix] [nvarchar] (10) NULL,
[EmailPromotion] [int] NOT NULL,
[AdditionalContactInfo] [xml] NULL,
[Demographics] [xml] NULL,
[rowguid] [uniqueidentifier] ROWGUIDCOL NOT NULL,
[ModifiedDate] [datetime] NOT NULL

GO

How to do it...

1. Open the PowerShell console by going to Start | Accessories | Windows
PowerShell | Windows PowerShell ISE.

2. Let's add some helper functions first. Type the following and then run it

Import-Module SQLPS -DisableNameChecking
SinstanceName = "KERRIGAN"
$dbName = "AdventureWorks2008R2"

Chapter 2

function Truncate-Table {

<#
.SYNOPSIS
Very simple function to truncate
records from Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sglmusings.com
#>

param([string] SinstanceName, [string] $dbName)

Squery = @"

TRUNCATE TABLE Test.Person
n

@

#icheck number of records
Invoke-Sglcmd -Query $Squery
-ServerInstance $instanceName
-Database $dbName

}

function Get-PersonCount {

<#
.SYNOPSIS
Very simple function to get number
of records in Test.Person
.NOTES
Author : Donabel Santos
.LINK
http://www.sglmusings.com
#>
param([string] SinstanceName, [string] $dbName)
Squery = @"

SELECT COUNT (*) AS NumRecords
FROM Test.Person

n

@

#icheck number of records
Invoke-Sglcmd -Query $Squery
-ServerInstance $instanceName
-Database S$dbName

}

SQL Server and PowerShell Basic Tasks

3.

Add the following script and run it:

#let's clean up the Test.Person table first
Truncate-Table $instanceName S$dbName

Sserver = "KERRIGAN"

Stable = "AdventureWorks2008R2.Test.Person"

Simportfile = "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.
csv"

#command to import from csv

Scmdimport = "bcp $(Stable) in “"S$(Simportfile) " -SsSserver -T -c
-t ‘nl\n -r \n\n\n "
<#

Scmdimport gives you something like this:

bcp AdventureWorks2008R2.Test.Person in "C:\Temp\Exports\
AdventureWorks2008R2.Person.Person.csv" —-SKERRIGAN -T -c -t "|" -r
n\nn

#>

#run the import command
Invoke-Expression $cmdimport

#delay 1 sec, give server some time to import records
#sleep helps us avoid race conditions

Start-Sleep -s 2

Get-PersonCount $instanceName $dbName

Performing a bulk import using bep is a straightforward task—we need to use the
Invoke-Expression cmdlet and pass in the bcp command. In this recipe, however, we
have cleaned up our script a little bit and have started off with a couple of helper functions.

The first helper function, Truncate-Table, is a simple helper function that truncates
the Test . Person table to which we want to import the records. This function passes
the TRUNCATE TABLE command to SQL Server using the Invoke-Sglcmd cmdlet.
To use this function, simply call:

Truncate-Table $instanceName S$dbName

Chapter 2

The second helper function, Get - PersonCount, simply returns a count of the records that
have been imported into the Test . Person table. This also uses the Invoke-Sglcmd
cmdlet. To invoke the function, use the following code:

Get-PersonCount $instanceName $dbName

The core of this recipe is with the construction of the bep import command:

Sserver = "KERRIGAN"
Stable = "AdventureWorks2008R2.Test.Person"
$importfile = "C:\Temp\Exports\AdventureWorks2008R2.Person.Person.csv"

#command to import from csv

Scmdimport = "bcp " + Stable + " in " + '"' + Simportfile + '"' + " -8
$server -T -c -t “"| " -r “v\n " "

This will give us the bcp command that points to the import file; it specifies the pipe as the
field delimiter and newline as the row delimiter:

bcp AdventureWorks2008R2.Test.Person in "C:\Temp\Exports\
AdventureWorks2008R2.Person.Person.csv" -T -c -t "|" -r "\n"

Once this command is constructed, we just need to pass it to the Invoke-Sqglcmd expression:
Invoke-Expression $cmdimport

We also added a little bit of delay here using the Start-Sleep cmdlet, with a sleep interval
of 2 seconds, to allow INSERT to happen before we count the records. This is a very simplistic
way to avoid race conditions, but for our purposes in this recipe it is sufficient.

» The Performing bulk import using BULK INSERT recipe
» The Performing bulk export using bcp recipe

