
2
Managing Windows 

Network Services with 
PowerShell

In this chapter we will cover the following recipes:

 f Configuring static networking

 f Installing domain controllers

 f Configuring zones in DNS

 f Configuring DHCP scopes

 f Configuring DHCP server failover

 f Converting DHCP addresses to static

 f Building out a PKI environment

 f Creating AD users

 f Searching for and reporting on AD users

 f Finding expired computers in AD

 f Creating and e-mailing a superuser report

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

60

Introduction
Setting up a new Active Directory environment can be either exciting or boring. If you have 
rarely built out new domain and networking environments, the process is probably new and 
very exciting. However, if you are constantly building out new environments for test labs or 
other business needs, the process can be fairly long and drawn out. Instead, you are mostly 
interested in automating the process to require minimal user input and maintain consistency 
between builds.

This chapter covers the installation and configuration of Active Directory, DNS, DHCP, and 
Certificate Services. This chapter should cover everything necessary to prepare an environment 
as a fully functioning Active Directory domain for use in labs or new domain environments.

Configuring static networking
TCP/IP is the primary technology used for communicating between computers today. When 
first building out an environment, one of the first items to accomplish is to define and apply 
an IP addressing scheme. Once the addressing scheme is defined, we can create static 
addresses for our first servers. Later, we will configure DHCP in case static addressing is  
not desired for all of the systems in your environment.

Getting ready
From the following diagram we can see that we have already defined our addressing scheme 
using both IPv4 and IPv6. At the start of our network, we have a router acting as a default 
gateway, and we will configure two servers in preparation for becoming domain controllers.  
The default gateway router is already statically assigned with IPv4 and IPv6 addresses:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

61

All three of these components are connected to a common Ethernet segment to  
communicate with each other.

Before defining any networking configuration, we should confirm that 
our addresses do not conflict with other networks in our environment. 
Even when building out isolated environments, it is best to use 
different network addresses in case of accidental conflict with 
production environments.

How to do it...
Carry out the following steps to configure static networking:

1. Find the interface to set by executing Get-NetIPInterface:

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

62

2. Set the IP information using New-NetIPAddress:
New-NetIPAddress -AddressFamily IPv4 -IPAddress 10.10.10.10 
-PrefixLength 24 -InterfaceAlias Ethernet 

3. Set DNS Servers using Set-DnsClientServerAddress:
Set-DnsClientServerAddress -InterfaceAlias Ethernet 
-ServerAddresses "10.10.10.10","10.10.10.11" 

4. Set the default route using New-NetRoute:

New-NetRoute -DestinationPrefix "0.0.0.0/0" -NextHop "10.10.10.1" 
-InterfaceAlias Ethernet 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

63

How it works...
In the first step we list out the network adapters available on the server. Windows Servers often 
include several network adapters of different types, and depending on the features installed, 
there can be several more. By executing Get-NetworkIPInterface, we list the interface 
names and indexes that we will use to identify the specific interface we desire to configure.

The second and third steps use New-NetIPAddress and Set-DnsClientServerAddress to 
configure the identified interface with IPv4 address and DNS targets for the specified interface.

The last step uses New-NetRoute to define a network route. The –DestinationPrefix 
0.0.0.0/0 parameter identifies this route as the default route, or default gateway. The –
NextHop 10.10.10.1 parameter is the router address to forward traffic into if another  
route does not take precedence.

The following screenshot shows the IPv4 address properties after finalizing configuration  
via PowerShell:

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

64

There's more...
There are a few more features provided by PowerShell. They are as follows:

 f IPv6 addressing: In addition to configuring IPv4, PowerShell can also configure IPv6 
addresses. The process for configuring static IPv6 addressing is exactly the same as 
IPv4, the only change is the addresses themselves.

Following are examples of configuring IPv6 on the same host. Note that both IPv4 and 
IPv6 addressing can coexist on the same server without issue:

New-NetIPAddress -AddressFamily IPv6 -IPAddress 2001:db8:1::10 `
-PrefixLength 64 -InterfaceAlias Ethernet
New-NetRoute -DestinationPrefix ::/0 -NextHop 2001:db8:1::1 `
-InterfaceAlias Ethernet
Set-DnsClientServerAddress -InterfaceAlias Ethernet `
-ServerAddresses "2001:db8:1::10","2001:db8:1::11"

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

65

 f Additional IP addresses: By using the New-NetIPAddress function, an interface 
can be configured with multiple IP addresses simultaneously. This configuration is 
often used for clustering or load balancing within Windows. Following is an example 
of configuring an additional address:
New-NetIPAddress -AddressFamily IPv4 -IPAddress 10.10.10.250 
-PrefixLength 24 -InterfaceAlias Ethernet 

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

66

 f Additional routes: Windows has the ability to route network packets to more 
locations than the default gateway. Say for instance, there are two routers on your 
network: the default gateway and a second gateway. The second gateway is used 
to access the 10.10.20.0/24 network, and the Windows server needs to be 
configured to route to it:

By executing the New-NetRoute command again, with the -DestinationPrefix 
and -NextHop addresses changed appropriately, we add a specific route to the 
server:
New-NetRoute -DestinationPrefix "10.10.20.0/24" -NextHop 
"10.10.10.254" -InterfaceAlias Ethernet 

In some cases, such as a dedicated management network, the 
secondary network may be connected to a different network interface. 
If that is the situation, change the –InterfaceAlias parameter to 
target the second interface.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

67

The full list of routes can be viewed by running Get-NetRoute. This will return all 
IPv4, IPv6, default, and static routes that are defined on the system:

Installing domain controllers
Once the TCP/IP networking is set up and working, the next step to tackle is installing the 
domain controllers. In a Windows Active Directory domain, the domain controllers can be 
viewed as the core of the network. Domain controllers provide user authentication, group 
policy information, time synchronization, and access to Active Directory objects. Additionally, 
domain controllers often provide several network services such as DNS, DHCP, certificate 
services, and more.

This recipe will set up and install the first domain controller, creating a new domain in a  
new forest. Once completed, the second domain controller will be remotely installed and 
promoted. Additionally, we will install DNS on both domain controllers to provide name 
resolution services.

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

68

Getting ready
This recipe assumes a server and networking configuration setup similar to the prior recipe. We 
will be working with newly installed servers without any additional roles or software installed. To 
complete these tasks, you will need to log on to the server as the local administrator.

How to do it...
Carry out the following steps to install the domain controller:

1. As an administrator, open a PowerShell.

2. Identify the Windows Features to install:
Get-WindowsFeature | Where-Object Name -like *domain*
Get-WindowsFeature | Where-Object Name -like *dns*

3. Install the necessary features:
Install-WindowsFeature AD-Domain-Services, DNS –
IncludeManagementTools 

4. Configure the domain:

$SMPass = ConvertTo-SecureString 'P@$$w0rd11' –AsPlainText -Force
Install-ADDSForest -DomainName corp.contoso.com –
SafeModeAdministratorPassword $SMPass –Confirm:$false

How it works...
The first step executes the Get-WindowsFeature Cmdlet to list the features necessary 
to install domain services and DNS. If you are unsure of the exact names of the features to 
install, this is a great method to search for the feature names using wildcards. The second 
step uses Install-WindowsFeature to install the identified features, any dependencies, 
and any applicable management tools.

The third step calls Install-ADDSForest to create a new domain/forest named corp.
contoso.com. Before promoting the server to a domain controller, we create a variable named 
$SMPass, which will hold a secure string that can be used as a password when promoting the 
server. This secure string is then passed as -SafeModeAdministratorPassword to the 
server, allowing access to the server if the domain services fail to start in the future:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

69

You will see a notice similar to the preceding screenshot when installation is finished.  
The system will automatically restart and the domain controller install will be complete.

There's more...
The following lists what more can be done with the domain controller:

 f Joining a computer to domain: Once the domain has been created, computers  
can be joined to the domain manually or via automation. The following example 
shows how to use PowerShell to join the CorpDC2 computer to the corp.contoso.
com domain.
$secString = ConvertTo-SecureString 'P@$$w0rd11' -AsPlainText 
-Force
$myCred = New-Object -TypeName PSCredential -ArgumentList "corp\
administrator", $secString
Add-Computer -DomainName "corp.contoso.com" -Credential $myCred –
NewName "CORPDC2" –Restart

Similar to creating the domain, first a $secString variable is created to hold a 
secure copy of the password that will be used to join the computer to the domain. 
Then a $myCred variable is created to convert the username/password combination 
into a PSCrededntial object that will be used to join the computer to the domain. 
Lastly, the Add-Computer Cmdlet is called to join the computer to the domain and 
simultaneously, rename the system. When the system reboots, it will be connected  
to the domain.

 f Push install of domain controller: It is normally considered best practice to have 
at least two domain controllers (DCs) for each domain. By having two DCs, one can 
be taken offline for maintenance, patching, or as the result of an unplanned outage, 
without impacting the overall domain services.

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

70

Once a computer has been joined to the domain, promoting the system to a DC  
can be performed remotely using PowerShell:
Install-WindowsFeature –Name AD-Domain-Services, DNS 
-IncludeManagementTools –ComputerName CORPDC2
Invoke-Command –ComputerName CORPDC2 –ScriptBlock {
$secPass = ConvertTo-SecureString 'P@$$w0rd11' -AsPlainText –Force
$myCred = New-Object -TypeName PSCredential -ArgumentList "corp\
administrator", $secPass
$SMPass = ConvertTo-SecureString 'P@$$w0rd11' –AsPlainText –Force
Install-ADDSDomainController -DomainName corp.contoso.com –
SafeModeAdministratorPassword $SMPass -Credential $myCred –
Confirm:$false
}

First, the Domain and DNS services and appropriate management tools are installed 
on the remote computer. Then, using the Invoke-Command Cmdlet, the commands 
are executed remotely to promote the server to a domain controller and reboot.

To create a new domain/forest, we used the Install-ADDSForest 
command. To promote a computer into an existing domain/forest, we 
use the Install-ADDSDomainController command.

Configuring zones in DNS
Windows domains rely heavily on DNS for name resolution and for finding appropriate 
resources. DNS is composed primarily of zones, each of which contains records. These  
zones and records provide name to address and address to name resolution for clients.

Here we will install and configure the DNS service and configure zones for servicing clients.

Getting ready
This recipe assumes a server and networking configuration similar to what is created in 
the first recipe. For DNS services to operate, the server does not need to be a member  
of an Active Directory domain, and in some scenarios, such as internet facing systems,  
Active Directory membership is discouraged.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

71

We will be configuring our DNS servers with the following zones:

Zone Type
corp.contoso.com AD integrated
10.10.10.in-addr.
arpa

AD integrated reverse lookup

20.168.192.in-add.
arpa

AD integrated reverse lookup

contoso.com Standard primary
fabrkam.com Conditional forwarder to 

192.168.99.1
corp.adatum.com Secondary zone referencing 

192.168.1.1

How to do it...
Carry out the following steps to configure zones in DNS:

1. Identify features to install:
Get-WindowsFeature | Where-Object Name -like *dns*

2. Install DNS feature and tools (if not already installed):
Install-WindowsFeature DNS -IncludeManagementTools –
IncludeAllSubFeature

3. Create a reverse lookup zone:
Add-DnsServerPrimaryZone –Name 10.10.10.in-addr.arpa –
ReplicationScope Forest
Add-DnsServerPrimaryZone –Name 20.168.192.in-addr.arpa –
ReplicationScope Forest

4. Create a primary zone and add static records:
Add-DnsServerPrimaryZone –Name contoso.com –ZoneFile contoso.com.
dns
Add-DnsServerResourceRecordA –ZoneName contoso.com –Name www –
IPv4Address 192.168.20.54 –CreatePtr

5. Create a conditional forwarder:
Add-DnsServerConditionalForwarderZone -Name fabrikam.com 
-MasterServers 192.168.99.1

6. Create a secondary zone:

Add-DnsServerSecondaryZone -Name corp.adatum.com -ZoneFile corp.
adatum.com.dns -MasterServers 192.168.1.1 

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

72

How it works...
The first two steps may have already been completed if your DNS server coexists on the 
domain controller. When viewing the output of Get-WindowsFeature in the first step, if 
Install State for the DNS features equals Installed, the roles are already installed. If 
the roles are already installed, you can still attempt to reinstall them without causing issues.

The third step creates two AD-integrated reverse lookup zones named 10.10.10.in-addr.
arpa and 20.168.192.in-addr.arpa. These zones are used for IP-to-Name resolution 
for servers in the 10.10.10.0/24 (internal) and 192.168.20.0/24 (DMZ or untrusted) 
subnets. These reverse lookup zones are not automatically created when installing DNS or 
Active Directory and it is the administrator's responsibility to create it.

It is considered a best practice to have a reverse lookup zone for all 
networks in your organization. This eases many operational tasks 
and some network tools fail to work properly if the reverse lookup 
zones don't exist.

The fourth step creates a standard primary zone named contoso.com. This zone is different 
from the corp.contoso.com zone that was automatically created during creation of the 
domain. This new zone will be used to host records used in an untrusted or DMZ environment. 
In this example we created a static record www.contoso.com, configured it with a target IP 
address, and configured the reverse lookup record as well.

The steps shown here are an example of creating a primary zone. Additional 
steps may be needed to fully secure a DNS server that is accessible by the 
outside world.
Additionally, standard primary zones cannot be AD-integrated and do 
not automatically replicate to other DNS servers. To replicate a standard 
primary zone, a secondary zone must be created on the target DNS server 
and authorized to replicate.

The fifth step creates a conditional forwarder named fabrikam.com. A conditional forwarder 
simply identifies the domain request and forwards it to the appropriate master servers.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

73

The sixth step creates a secondary zone named corp.adatum.com. Unlike primary zones, 
secondary zones are read-only, and they only hold a copy of the zone data as pulled from 
the master server. To add or update records in this zone, the changes must be made at the 
master server, and then replicated to the secondary.

Unlike primary zones and conditional forwarders, secondary zones 
cannot be AD-integrated and do not automatically replicate to other 
DNS servers in the domain. This means that the secondary zones  
must be configured on each DNS server that will host the zone.

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

74

There's more...
The following lists the additional features of zones in DNS:

 f Listing all zones: A full list of DNS zones on a server can be returned by executing 
the Get-DnsServerZone function:

 f Updating DNS records: When updating static records there are two options: delete 
and recreate, and update. The following is a simple function that gets a current 
resource record from DNS, updates it, and commits it back to DNS:

Function Update-DNSServerResourceRecord{
    param(
    [string]$zoneName = $(throw "DNS zone name required")
    ,[string]$recordName = $(throw "DNS record name required")
    ,[string]$newIPv4Address = $(throw "New IPv4Address required")
    )
    # Get the current record from DNS
    $oldRecord = Get-DnsServerResourceRecord -ZoneName $zoneName 
-Name $recordName
    Write-Host "Original Value: " $oldRecord.RecordData.
IPv4Address

    # Clone the record and update the new IP address
    $newRecord=$oldRecord.Clone()
    $newRecord.RecordData.IPv4Address = [ipaddress]$newIPv4Address

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

75

    # Commit the changed record
    Set-DnsServerResourceRecord -ZoneName $zoneName 
-OldInputObject $oldRecord -NewInputObject $newRecord
    Write-Host "New Value: " (Get-DnsServerResourceRecord 
-ZoneName $zoneName -Name $recordName).RecordData.IPv4Address  
} 

Configuring DHCP scopes
As an alternative to statically assigned TCP/IP addresses, Windows supports the Dynamic Host 
Configuration Protocol (DHCP). This service allows for provisioning of IP addresses, default 
gateways, DNS information, and even more advanced information such as boot servers.

This recipe will set up the basic DHCP features on a domain controller and configure an  
initial DHCP scope.

Getting ready
This recipe assumes a server, networking, and domain configuration similar to what is  
created in the Installing domain controllers recipe.

How to do it...
Carry out the following steps to configure DHCP scopes:

1. Install DHCP and management tools:
Get-WindowsFeature | Where-Object Name -like *dhcp*
Install-WindowsFeature DHCP -IncludeManagementTools

2. Create a DHCP scope
Add-DhcpServerv4Scope -Name "Corpnet" -StartRange 10.10.10.100 
-EndRange 10.10.10.200 -SubnetMask 255.255.255.0

3. Set DHCP options
Set-DhcpServerv4OptionValue -DnsDomain corp.contoso.com -DnsServer 
10.10.10.10 -Router 10.10.10.1

4. Activate DHCP

Add-DhcpServerInDC -DnsName corpdc1.corp.contoso.com

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

76

How it works...
The first step uses Install-WindowsFeature to install the DHCP feature and  
management tools on the currently logged on system. Once installed, the second step  
calls Add-DHCPServerv4Scope to create a DHCP scope named Corpnet, providing 
dynamic IPs on the 10.10.10.0/24 subnet.

The third step uses Set-DhcpServerv4OptionValue to set up common DHCP 
options, such as the DNS servers and default gateway address. This command can 
include other common options such as the DNS domain name, WinsServer, and Wpad 
location. Additionally, any extended DHCP option ID can be configured using the Set-
DhcpServerv4OptionValue command.

The last step calls Add-DHCPServerInDC to activate the DHCP service on the computer in 
Active Directory. This authorizes the DHCP service to provide addresses to clients in the domain.

There's more...
The following lists the additional features of DHCP:

 f Adding DHCP reservations: In addition to creating and activating DHCP scopes,  
we can also create reservations in DHCP. A reservation matches a network adapter's 
MAC address to a specific IP address. It is similar to using a static address, except  
the static mapping is maintained on the DHCP server:
Add-dhcpserverv4reservation –scopeid 10.10.10.0 –ipaddress 
10.10.10.102 –name test2 –description "Test server" –clientid 12-
34-56-78-90-12
Get-dhcpserverv4reservation –scopeid 10.10.10.0

 f Adding DHCP exclusions: Additionally, we can create DHCP exclusions using 
PowerShell. An exclusion is an address, or range of addresses that the DHCP server 
won't provide to clients. Exclusions are often used when individual IP addresses 
within the scope have been statically assigned:

Add-DhcpServerv4ExclusionRange –ScopeId 10.10.10.0 –StartRange 
10.10.10.110 –EndRange 10.10.10.111 
Get-DhcpServerv4ExclusionRange

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

77

Configuring DHCP server failover
Prior to Server 2012, there were limited methods of ensuring DHCP was redundant and 
always available to service requests. One of the most common methods was to split DHCP 
scopes between multiple servers, with each server providing a subset of the scope. If one 
system was unavailable, the other system was still able to provide a subset of addresses. 
However, this caused problems because if a DHCP server was unavailable, there may not be 
enough addresses available to service all of your clients. Other redundancy options involved 
clustering or other expensive technologies that were difficult to manage.

In Server 2012 DHCP server failover is a built-in feature. This feature allows servers to share  
a common DHCP database to provide leases and provide redundancy. To use DHCP failover, 
the DHCP feature just needs to be installed and configured across servers. This recipe will 
walk through the configuration of DHCP failover.

Getting ready
This recipe assumes a server, networking, and domain configuration similar to what is  
created in the Installing domain controllers recipe. A minimum of two servers will be needed  
to configure as DHCP servers. Additionally, it assumes one of the domain controllers already 
has DHCP installed and configured.

How to do it...
Carry out the following steps to configure DHCP server failover:

1. Install DHCP on the second server either locally or remotely:
Install-WindowsFeature dhcp -IncludeAllSubFeature -ComputerName 
corpdc2

2. Authorize DHCP on the second server:
Add-DhcpServerInDC -DnsName corpdc2.corp.contoso.com 

3. Configure DHCP failover:

Add-DhcpServerv4Failover -ComputerName corpdc1 -PartnerServer 
corpdc2 -Name Corpnet-Failover -ScopeId 10.10.10.0 -SharedSecret 
'Pa$$w0rd!!' 

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

78

How it works...
The first and second steps are responsible for installing and authorizing DHCP on CorpDC2. 
This is the same process used in the previous recipe to install DHCP on the first domain 
controller. Once installed, we use Add-DhcpServerInDC to authorize the server to act as  
a DHCP server.

The third step calls Add-DHCPServerv4Failover to configure DHCP failover across 
CorpDC1 and CorpDC2. This command identifies the scope 10.10.10.0 for failover  
and configures a shared key for authenticating communication between the servers.

At this point the failover configuration is complete and both DHCP servers will begin providing 
addresses. If you open the DHCP administration console, you will see that both domain 
controllers have DHCP installed and servicing clients. Additionally, you will see that both 
servers have the same client lease information, making the solution truly redundant:

Converting DHCP addresses to static
While DHCP is an easy way to manage network addresses, especially, in dynamic environments, 
it does have its drawbacks. If something happens on your physical network or to your DHCP 
server, clients may not be able to receive or renew their addresses. And due to the dynamic 
nature of DHCP, addresses may change, causing issues with firewalls and DNS records.

This is normally fine for desktop environments, but in server environments, we want to 
minimize any possibility for an outage. As such, at some point you may want to convert  
your dynamically addressed hosts to use static addresses.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

79

Getting ready
This recipe assumes a basic server configuration with a single interface using a single  
IP address via DHCP. The script works best when run locally on the target server.

How to do it...
Log on to the target server interactively and execute the following script:

# Identify all adapters that recieved an address via DHCP
$adapters = Get-WmiObject -Class Win32_NetworkAdapterConfiguration | 
Where-Object {($_.IPAddress) -and $_.DHCPEnabled -eq 'True' }

# Iterate through each adapter
foreach($adapter in $adapters)
{
    # Get current adapter and IP information
    $adapIndex = $adapter.InterfaceIndex
    $ipAddress = $adapter.IPAddress[0]
    $subnetMask = $adapter.IPSubnet[0]
    $defaultGateway = $adapter.DefaultIPGateway[0]
    $prefix = (Get-NetIPAddress -InterfaceIndex $adapIndex –
AddressFamily IPv4).PrefixLength
    $dnsServers = $adapter.DNSServerSearchOrder
    [ipaddress]$netAddr = ([ipaddress]$ipAddress).Address -band 
([ipaddress]$subnetMask).Address

    # Identify the DHCP server
    $dhcpServer = $adapter.DHCPServer
    $dhcpName = ([System.Net.DNS]::GetHostEntry($dhcpServer)).HostName

    # Add an exclusion to DHCP for the current IP address
    Invoke-Command -ComputerName $dhcpName -ScriptBlock{
        Add-DhcpServerv4ExclusionRange –ScopeId $args[0] –StartRange 
$args[1] –EndRange $args[1]
    } -ArgumentList $netAddr.IPAddressToString, $ipAddress

    # Release the DHCP address lease
    Remove-NetIPAddress -InterfaceIndex $adapIndex -Confirm:$false

    # Statically assign the IP and DNS information
    New-NetIPAddress -InterfaceIndex $adapIndex -AddressFamily 
IPv4 -IPAddress $ipAddress -PrefixLength $prefix -DefaultGateway 
$defaultGateway
    Set-DnsClientServerAddress -InterfaceIndex $adapIndex 
-ServerAddresses $dnsServers
} 

www.it-ebooks.info

http://www.it-ebooks.info/


Managing Windows Network Services with PowerShell

80

How it works...
The first part of the script queries WMI for all network adapters that both have an active  
IP address, and are using DHCP. The results from the WMI query are placed into a variable 
named $adapters and are iterated in a for each loop, where the adapter and IP 
information is collected.

A network adapter can hold multiple IP addresses, but this script is 
only capable of handling the first IPv4 address of each adapter.

Once all of the network information is collected, Invoke-Command is used to connect to the 
DHCP server that issued the address and creates an exclusion. The exclusion record's start 
and end address is the IP address assigned to the client. This prevents the IP address from 
being reused by another host at a later time.

Lastly, the adapter is changed to a static address. Remove-NetIPAddress is used to release 
the DHCP address from the interface. Once cleared, New-NetIPAddress is used to statically 
configure the interface with the same IPv4 address, subnet, and gateway that was previously 
held. Finally, Set-DnsClientServerAddress assigns the DNS server addresses.

There's more...
This script can be run against a system remotely using a PSSession, with the exception of 
creating the DHCP exclusion. When using a PSSession to a remote computer, you cannot 
create another session to a third computer. As such, the script will run and successfully set 
the local interfaces to static, but it won't exclude DHCP from providing those addresses to 
another client.

Building out a PKI environment
Windows Active Directory domains are a great way to authenticate users and computers. 
Using a central store of accounts and passwords, requests can be easily authenticated, 
and accounts can be quickly added, updated, or removed as needed. While this is a great 
method for authentication within the domain, it does not work as well outside of the domain. 
Situations, where the domain controller may not be accessible, where the authority of the 
domain controller is in question, or when accessing resources outside of a domain, call for 
alternative authentication methods.

Certificates allow for creation of an authentication infrastructure by using a series of 
trusts. Instead of joining a domain, and thereby trusting the domain controllers, you trust a 
Certificate Authority (CA). The CA is responsible for handing out certificates that authenticate 
the user or computer. By trusting the CA, you implicitly trust the certificates it produces.

www.it-ebooks.info

http://www.it-ebooks.info/

