

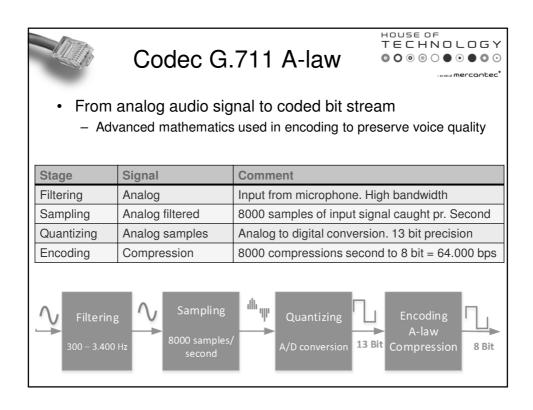
DTMF Dialing

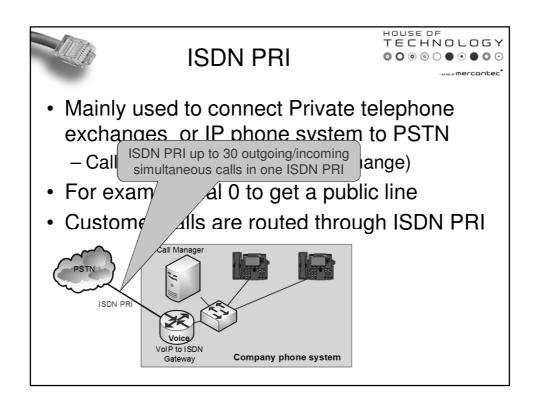
- Telephone sends dual tone when keypad pressed
- Exchange recognizes dual tones and interprets them as digits
- All tones are within the 300 to 3.400 Hz band
 - This is called in-band signalling
 - Voice and signalling carried in the same band

Frequency	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	А
770 Hz	4	5	6	В
852 Hz	7	8	9	С
941 Hz	*	0	#	D

Circuit vs. packet switched

- Circuit switched network (PSTN)
 - A logical connection is made between the two endpoints. (Phones)
 - Bandwidth guaranteed (64 Kbps for voice)
 - Delay constant
- Packet switched network (IP network)
 - A logical connection use TCP/UDP between the two endpoints. (IP Phones)
 - No bandwidth guarantee
 - Delay not constant


MOS Mean Opinion Score


HOUSE OF TECHNOLOGY

MOS used to validate the quality of telephone voice quality

MOS	Quality	impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

Codec	From	Bandwidth	Data rate	MOS
G.711	1972	300-3.400 Hz	64 Kbps	4,1
G.722	1988	50-7.000 Hz	64 Kbps	~4,5
G.726	1990	300-3.400 Hz	32 Kbps	3,85
G.729	1996	300-3.400 Hz	8 Kbps	3,92
GSM EFR	1995	300-3.400 Hz	12,2 Kbps	3,8

in/out of band signalling

- ISDN signalling
 - signalling carried in the D channel
 - Voice/data carried in B-channel
 - Signal and voice separated in two channels or bands
 - ISDN is an example of out-of-band signalling
- POTS
 - Voice carried in the 300 3.400 Hz band
 - signalling DTMF carried in the same band
 - POTS is an example of in-band-signalling

VoIP signalling standards

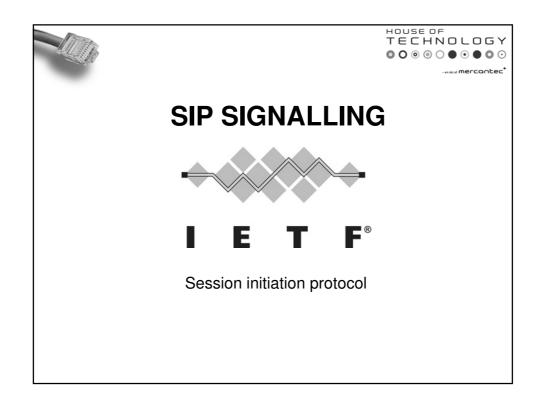
VoIP - Voice over IP

VoIP signalling standards

- A variety of IP based signalling standards to VoIP defined - and used
 - SIP
 - -H.323
 - MGCP
 - **—**
- SIP and H.323 included in this course
- The purpose of VoIP signalling
 - Establish, maintain and close voice calls
 - Eventually collect information for taxation

signalling standards

- Two kinds of information necessary to phone
 - Call control (signalling phone to/from exchange)
 - Voice transfer (Between participating phones)
- In traditional telephony
 - Call Control (For example POTS or ISDN)
 - Voice transfer (Circuit switched channel)
- In VoIP Voice over IP
 - Call control (For example SIP or H.323)
 - Voice transfer (Packet switched)

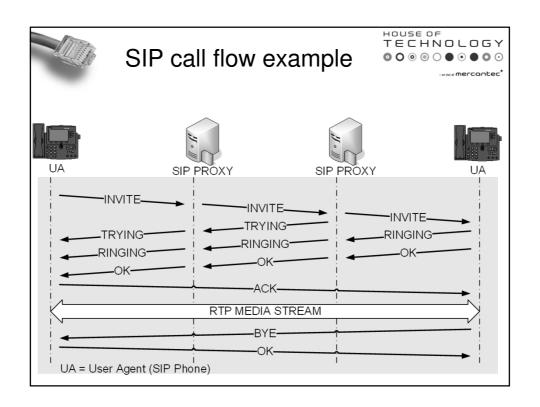

SIP and H.323

- H.323
 - Defined by ITU in 1996
 - International Telecommunication Union
 - Uses many technologies from PSTN
 - A suite of different protocols incl. voice/video
- SIP Session Initiation Protocol

- Defined by IETF in 1996
 - Internet Engineering Task Force
- Uses many technologies from the Internet
- Is a signalling protocol for voice/video

Session Initiation Protocol

- Defined by IETF in 1996
 - Internet Engineering Task Force I E T F
- Uses many technologies from the Internet
- · Is a signalling protocol for voice/video
- SIP are widely used as VoIP signalling



SIP Design

HOUSE OF TECHNOLOGY

HOUSE OF TECHNOLOGY

- Expandable
 - Easy integration of new facilities
- (Not) a substitute for PSTN
 - SIP are used by many service providers
- · Diversity of end-devices
 - Intelligent end-devices
- Multimedia
 - Voice, video....

- · Is a application layer protocol
- Is a text based signalling protocol
 - Reminding of the HTTP and SMTP protocols
- Are used to establish, maintain and terminate multimedia sessions
- Support unicast and multicast sessions
- · Location independent
 - Suitable for mobile users

SIP components

- There are two SIP components
- User Agents (UA) SIP End-points (IP Phones) consisting of
 - User Agent Client (UAC): Initiates sessions
 - User Agent Server (UAS): Respond sessions
- SIP servers
 - Proxy server Like a SIP IP-PBX
 - Registrar server User Agent register
 - Redirect server Redirect sessions

SIP addressing

- SIP addresses are identified by SIP URI's
 - Uniform Resource Identifier
- Example
 - sip:4103@mercantec.dk;transport=UDP
 - sip The URI service
 - 4103 The URI user part (extension/phone)
 - Mercantec.dk The URI host part
 - ;transport=UDP A URI parameter

SIP addressing

- Different formats of URI's
 - FQDN's: sip:heth@mercantec.dk
 - E.164: sip:30539361@mercantec.dk
 - E.164: tel:30539361
 - Mixed: sip:heth@194.123.12.23
- E.164 numbers in DNS

SIP messaging

- Messages contain header describing the communication in details
- Uses a text based syntax and header like HTTP
- Transport protocols TCP, UDP or SCTP
 - SCTP: Stream Control Transport Protocol
- Basically there are two kinds of messages
 - Requests: Sent by Clients
 - Response: Sent by servers

SIP messaging

· Request message header

Method Request URI SIP version

- Method: INVITE, ACK, BYE

Request URI: The receiver of the requestSIP version: Used SIP version (2.0 in use)

· Response message header

SIP version Status code Reason phrase	
---	-------------

- SIP version: Used SIP version (2.0 in use)

- Status code: An integer describing the answer

- Reason Phrase: A text description of status code

SIP requests methods

Command	Function
INVITE	Used to establish a media session between user agents. Starting a call
ACK	Confirms reliable message exchanges
BYE	Terminates a established session between agents
CANCEL	Terminates a pending request
OPTIONS	Requests information about the capabilities of a caller, without setting up a call
REGISTER	Used by a user agent to register to registrar. The user agent informs the registrar of its IP address and URI.

NOTE: There are defined more SIP request methods than indicated in the above table. The shown methods are from <u>RFC 3261</u>

SIP response codes With examples

Respons class	Status code	Reason phrase
Info	1xx	Provisional responses
	100	Trying
	180	Ringning
Succes	2xx	Succesful responses
	200	OK
Redirect	3xx	Redirection responses
	302	Moved temporarily
Client error	4xx	Client failure responses
	401	Unauthorized
Server error	5xx	Server failure responses
	503	Service unavailable

Global failure

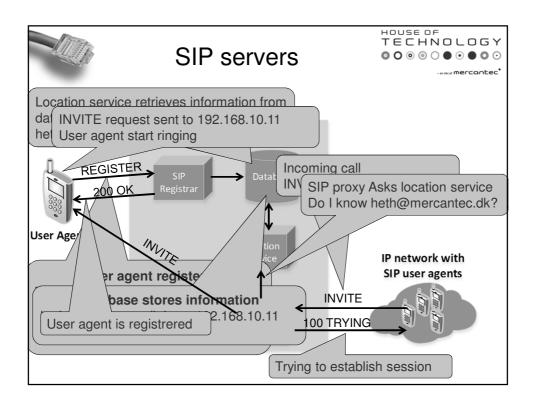
SIP User Agent – UA

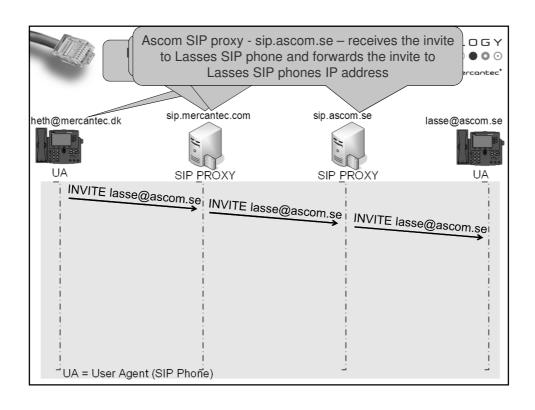
6xx

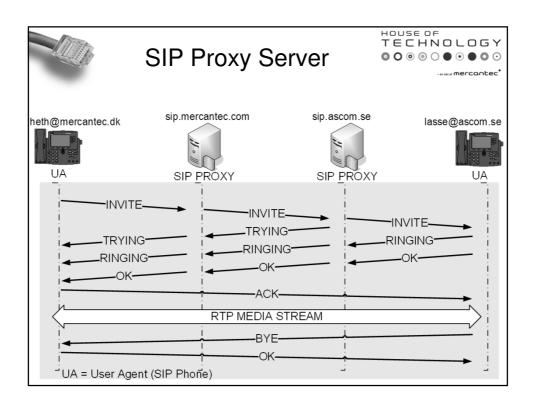
603

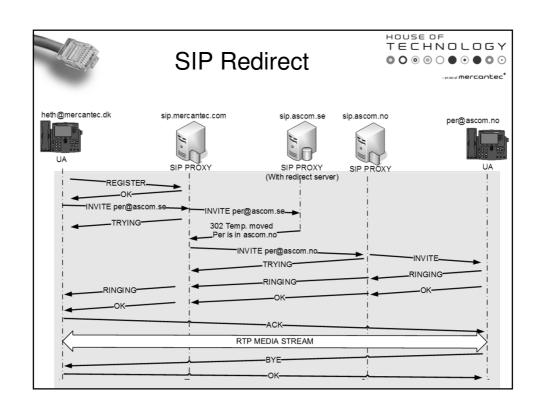
Global failure responses

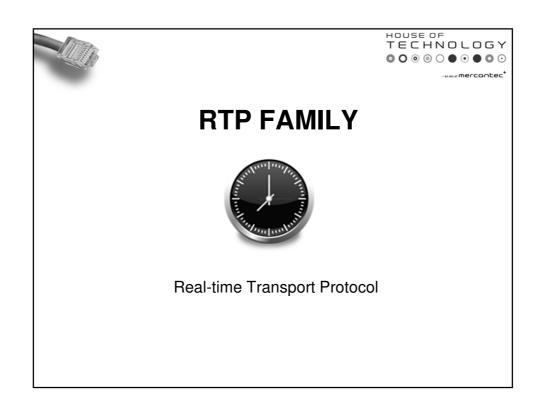
Decline

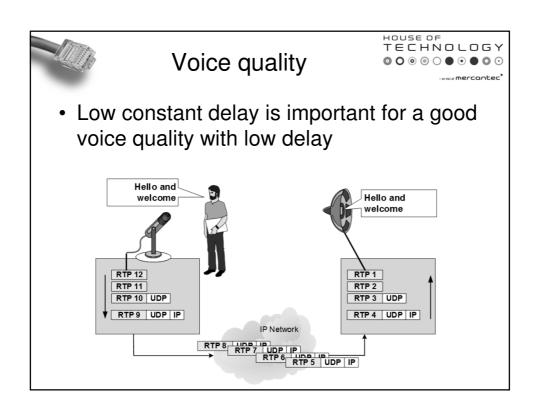

- A User Agent is a software component acting on behalf of a user
- The SIP phone soft or hard is a SIP UA
- User Agent Client UAC
 - Initiates SIP sessions when calling
 - Send SIP requests
- User Agent Server UAS
 - Accepts or rejects SIP session requests
 - Receives SIP requests and return SIP response

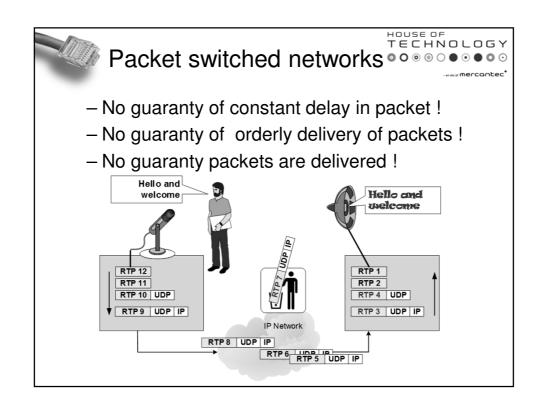



SIP servers




- Proxy server
 - Receive and sends SIP request and responses on behalf of the User Agents. (UA)
- · Registrar server
 - User Agents register to the registrar server
 - Keeps track on User Agents URI and IP addresses and acts as a location service
- Redirection Server
 - Returns "contact this address" responces
- The servers often live on the same "box"



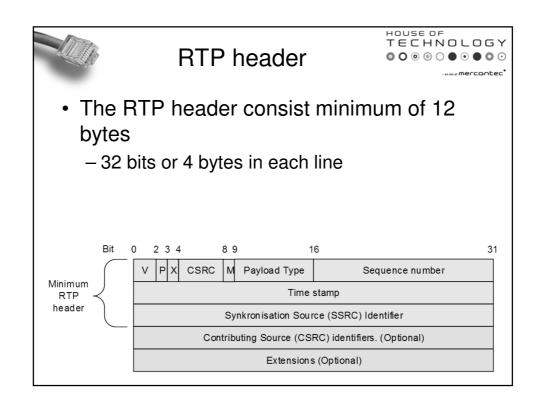


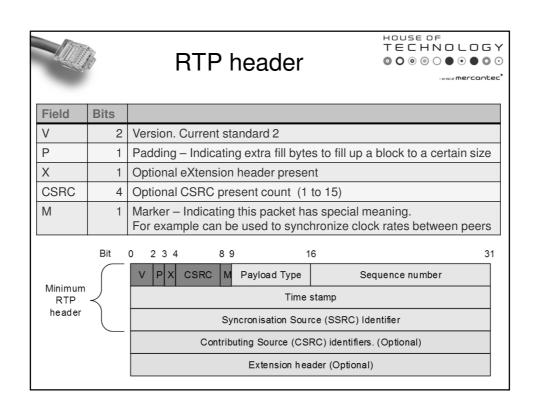
RTP

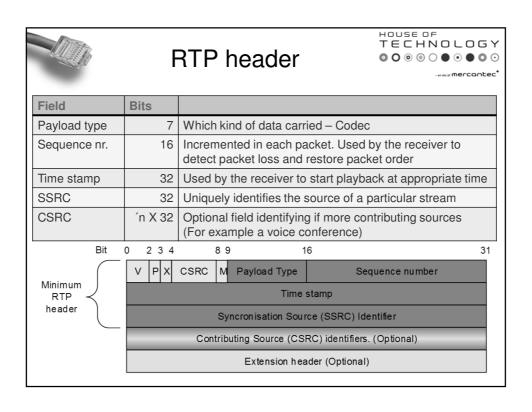
- Designed for end-to-end real-time transfer of data
- High lights
 - Primary standard for audio/video transport
 - Jitter Compensation
 - · Variable delay between packets is called Jitter
 - Detection of out of sequence packets
 - Possibility for multicasting
 - Transport via UDP or TCP
 - Secure version available SRTP with encryption

RTP

- · Real-time multimedia streaming
 - Can tolerate small amounts of lost packets
 - Rule of thumb in VoIP is up to 1% packet loss
 - Receiver uses an error concealment algorithm
 - Receiver uses small jitter-buffer
 - Delays playback a little allowing a little jitter
 - 20 mS often used in VoIP
 - Requires an optional signalling protocol
 - Such as SIP or H.323 to establish a session




RTP



- · Most implementations of RTP uses UDP
 - If data is not present in the "magic" moment the data is useless
- Reliability and timely delivery is the responsibility of the IP network
 - QoS necessary for good voice quality

Ethernet /	IP	UDP	RTP	Payload
frame	header	header	header	(Voice,video)
header	20 bytes	8 bytes	12 bytes	20 -160 bytes

RTP media stream example

HOUSE OF TECHNOLOG

- VoIP conversation profile
 - G.711 a-Law codec used
 - RTP time interval 20 mS = 0.02 second
- a-Law bit rate = 64.000 bps = 8.000 Bps
- RTP payload data pr. Packet
 - -8000 bytes/second * 0,02 second = 160 bytes
- Packet size: 20 + 8 + 12 + 160 = 200 Bytes
 - Without OSI layer 2 overhead (ethernet frame)

IP	UDP	RTP	Payload a-Law
header	header	header	
20 bytes	8 bytes	12 bytes	160 bytes

RTP media stream example

- 0,02 second between packets
 - -1/0,02 = 50 packets pr. Second
- Each packets is 200 bytes
 - -50 packets * 200 byte * 8 = 80.000 bps
- VoIP streams can be bidirectional
 - Network load = 2 * 80.000 bps = 160.000 bps

IP	UDP	RTP	Payload a-Law
header	header	header	
20 bytes	8 bytes	12 bytes	160 bytes

Silence suppression

- Voice conversations are often half duplex
 - One listen while the other talks
- No reason for sending RTP packets with background noise only
 - Silence suppression stops RTP transmission
 - Silence suppression is an option
 - Receiving phone makes comfort noise
 - Speaker has a feeling of the connection
- Saves bandwidth important in trunks

RTP family

· RTP family of protocols

Protoc ol	Description
RTP	End-to-end transfer of real-time stream data (Unencrypted)
RTCP	Provides statistics and control information for an RTP media stream
SRTP	End-to-end transfer of real-time stream data (Encrypted)
ZRTP	Cryptographic key-exchange protocol between VoIP end-points

Protocol	Name	Date standardized
RTP	Real-time Transport Protocol	1998
RTCP	Real-time Transport Control Protocol	1998
SRTP	Secure Real-time Transport Protocol	2004
ZRTP	Zimmerman Real-time Transport Protocol	2006

RTCP

Real-time Transport Control Protocol

- · Related to RTP
- Provides statistics and control information for an RTP media stream
- Sender report SR
 - The RTP sender periodically sends SR reports including the sent and received RTP packets
- Receiver report RR
 - Send by receive-only participants. Those who do not transmit RTP packets.

SRTP

Secure Real-time Transport Protocol

A version of RTP providing security

- Encryption
 - Only the intended receiver can read the data
- Authentication
 - Identity check of other party
- Integrity
 - Data cant be changed in transit
- Anti replay
 - Data cant be recorded and retransmitted

SRTP

TECHNOLOGY

Secure Real-time Transport Protocol

- Uses standard security features
 - Defaults to AES for encryption
 - HMAC-SHA1 for authentication and integrity
- The security standards are out of scope in this course module
- A new version of RTCP providing security
 - SRTCP Secure Real-time Control Protocol

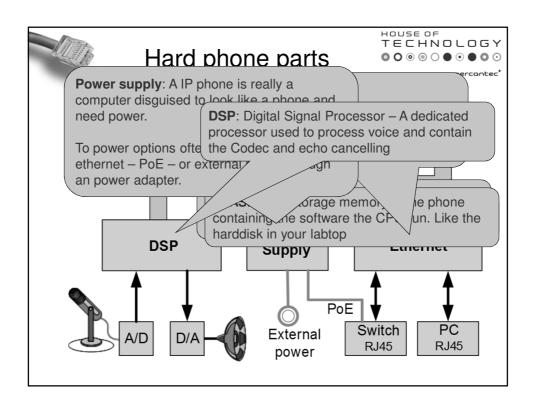
ZRTP

HOUSE OF TECHNOLOGY

Zimmermann Real-time Transport Protocol

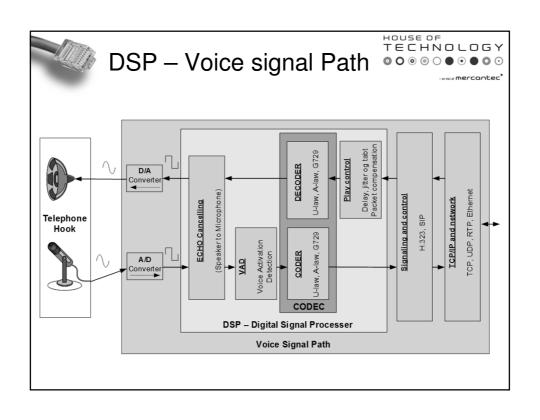
....mercantec

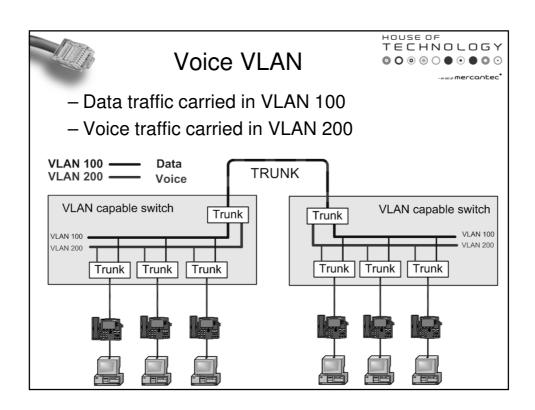
- Cryptographic key-agreement protocol
- · Can be used without a PKI or certificates
 - Public Key Infrastructure
- Uses RTP as transport channel
- signalling protocol unaware of ZRTP
- Negotiate keys between end-points
 - Uses Diffie-Hellman key exchange



IP phones

- · Soft, hard, wired and wireless
- Standardized signalling protocols
 - For example H.323 and SIP
- · Vendors add on functionality
 - Not 100% comparability between vendors
- Configuration of IP phones
 - Manually
 - Automatically Vendor specific configuration




DSP

Digital Signal Processor

- TECHNOLOGY

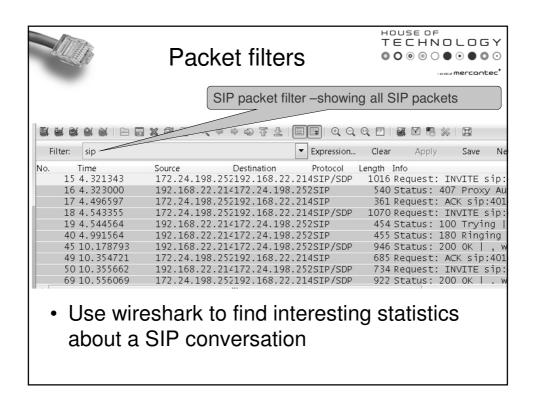
 O O O O O O O O
- A DSP is a microprocessor designed to process analog signal such as voice and video
- The analog signal has to be converted to digital by a A/D converter. (Analog to Digital converter)
- The DSP offload the CPU for working with the signal processing.
- A normal CPU can be used for signal processing
 - CPU's are not optimized for signal processing
 - All running programs share the same CPU. (Jitter)
- CPU's in PC's use Intels MMX instruction set
 - Special instructions for multimedia processing
- A dedicated DSP guaranties processing

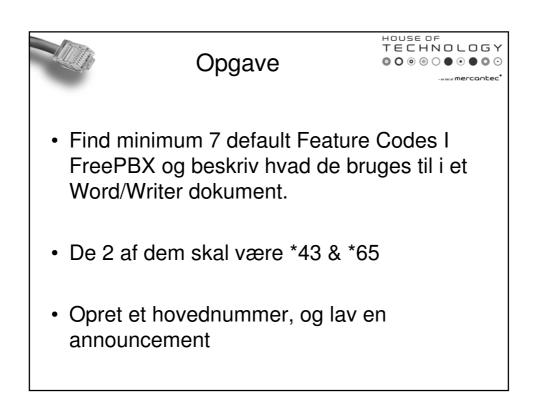
PoE Power over Ethernet

- Most IP phones are powered by 48 Vdc
- · Many IP phones can get power from
 - External power supply connected to mains
 - From switches capable of delivering power
 - PoE or Power over Ethernet
 - Picture below is a partial printout from a PoE capable switch

∰ mars.tekkom.dk - PuTTY						
Campus1#show power inline Available:280.0(w) Used:44.1(w) Remaining:235.9(w)						
Interfade Admin Oper Power Device Class Max (Watts)						Max
Fa0/1	auto	on	6.3	IP Pnone 7940	2	15.4
Fa0/2	auto	on	6.3	IP Pnone 7940	2	15.4
Fa0/3	auto	off	0.0			15.4




PoE Power over Ethernet



- Two standards
 - 802.3af supplying device with up to 12,95 Watt
 - -802.3at supplying device with up to 25,50 Watt
- Can be used with 10,100 and 1000 Mbps ethernet
- Some vendors invented their own version of PoE before IEEE standards
 - IEEE 802.3af from 2003
 - IEEE 802.3at from 2009 also called PoE plus

		F	-	oE er Etherne	HOUSE OF TECHNOLOGY © © © © © © © ©	
Pin RJ45	T568A RJ45	Pair	10/100 Spare Mode B	10/100 mixed Mode A	1000 Mbps Mode B	1000 Mbps Mode A
1	(I)	3	Rx+	RX+ DC+	TxRx A+	TxRx A+ DC+
2	0)	3	Rx-	RX- DC+	TxRx A-	TxRx A- DC+
3	(I)	2	Tx+	TX+ DC-	TxRx B+	TxRx B+ DC-
4	0)	1	DC+	Unused	TxRx C+ DC+	TxRx C+
5	0)	1	DC+	Unused	TxRx C- DC+	TxRx C-
6	0)	2	Tx-	TX- DC-	TxRx B-	TxRx B- DC-
7	0)	4	DC-	Unused	TxRx D+ DC-	TxRx D+
8	0)	4	DC-	Unused	TxRx D- DC-	TxRx D-
	Abbr.		Explanation			
	Rx+, Rx-		Receive plus and minus signal (Differential on pair)			
	Tx+, Tx-		Transmit plus and minus signal (Differential on pair)			
	DC+, DC-		PoE DC delivered common mode in pair. Plus or minus in pair.			

