Difference between revisions of "Linux Cluster til Center of Excelence/nVidia GPU"
From Teknologisk videncenter
m (→Links) |
m (→Links) |
||
Line 72: | Line 72: | ||
|Software Development Tools ||[http://www.nvidia.com/object/tesla_software.html C-based CUDA Toolkit] | |Software Development Tools ||[http://www.nvidia.com/object/tesla_software.html C-based CUDA Toolkit] | ||
|} | |} | ||
+ | =CUDA= | ||
+ | ''C''ompute ''U''nified ''D''evice ''A''rchitecture | ||
+ | ==Links til artikelserie af Rob Farber== | ||
+ | *[http://www.drdobbs.com/high-performance-computing/207200659 CUDA, Supercomputing for the Masses: Part 1] CUDA lets you work with familiar programming concepts while developing software that can run on a GPU | ||
+ | *[http://www.drdobbs.com/high-performance-computing/207402986 CUDA, Supercomputing for the Masses: Part 2] A first kernel | ||
+ | *[http://www.drdobbs.com/high-performance-computing/207603131 CUDA, Supercomputing for the Masses: Part 3] Error handling and global memory performance limitations | ||
+ | *[http://www.drdobbs.com/architecture-and-design/208401741 CUDA, Supercomputing for the Masses: Part 4] Understanding and using shared memory (1) | ||
+ | *[http://www.drdobbs.com/high-performance-computing/208801731 CUDA, Supercomputing for the Masses: Part 5] Understanding and using shared memory (2) | ||
+ | *[http://www.drdobbs.com/architecture-and-design/209601096 CUDA, Supercomputing for the Masses: Part 6] Global memory and the CUDA profiler | ||
+ | *[http://www.drdobbs.com/high-performance-computing/210102115 CUDA, Supercomputing for the Masses: Part 7] Double the fun with next-generation CUDA hardware | ||
+ | *[http://www.drdobbs.com/architecture-and-design/210602684 CUDA, Supercomputing for the Masses: Part 8] Using libraries with CUDA | ||
+ | *[http://www.drdobbs.com/high-performance-computing/211800683 CUDA, Supercomputing for the Masses: Part 9] Extending High-level Languages with CUDA | ||
+ | *[http://www.drdobbs.com/architecture-and-design/212903437 CUDA, Supercomputing for the Masses: Part 10] CUDPP, a powerful data-parallel CUDA library | ||
+ | *[http://www.drdobbs.com/high-performance-computing/215900921 CUDA, Supercomputing for the Masses: Part 11] Revisiting CUDA memory spaces | ||
+ | *[http://www.drdobbs.com/high-performance-computing/217500110 CUDA, Supercomputing for the Masses: Part 12] CUDA 2.2 Changes the Data Movement Paradigm | ||
+ | *[http://www.drdobbs.com/high-performance-computing/218100902 CUDA, Supercomputing for the Masses: Part 13] Using texture memory in CUDA | ||
+ | *[http://www.drdobbs.com/high-performance-computing/220601124 CUDA, Supercomputing for the Masses: Part 14] Debugging CUDA and using CUDA-GDB | ||
+ | *[http://www.drdobbs.com/architecture-and-design/222600097 CUDA, Supercomputing for the Masses: Part 15] Using Pixel Buffer Objects with CUDA and OpenGL | ||
=Links= | =Links= | ||
*[http://research.microsoft.com/en-us/um/redmond/events/escience2008/matsuoka-escience2008.pdf Tsunami cluster] Interessant artikel bla. strømforbrug | *[http://research.microsoft.com/en-us/um/redmond/events/escience2008/matsuoka-escience2008.pdf Tsunami cluster] Interessant artikel bla. strømforbrug | ||
*[http://forums.nvidia.com/lofiversion/index.php?t70731.html MatLAB and Tesla] How-to eksempel med Linux | *[http://forums.nvidia.com/lofiversion/index.php?t70731.html MatLAB and Tesla] How-to eksempel med Linux | ||
[[Category:Cluster]] [[Category:Linux]][[Category:CoE]] | [[Category:Cluster]] [[Category:Linux]][[Category:CoE]] |
Revision as of 11:55, 15 May 2010
Contents
nVidea Tesla C1060 GPU
- Pris pr. 14. maj 2010 kr. 7980,-
Form Factor | 10.5" x 4.376", Dual Slot |
# of Tesla GPUs | 1 |
# of Streaming Processor Cores | 240 |
Frequency of processor cores | 1.3 GHz |
Single Precision floating point performance (peak) | 933 |
Double Precision floating point performance (peak) | 78 |
Floating Point Precision | IEEE 754 single & double |
Total Dedicated Memory | 4 GDDR3 |
Memory Speed | 800MHz |
Memory Interface | 512-bit |
Memory Bandwidth | 102 GB/sec |
Max Power Consumption | 187.8 W |
System Interface | PCIe x16 |
Auxiliary Power Connectors | 6-pin & 8-pin |
Thermal Solution | Active fan sink |
Software Development Tools | C-based CUDA Toolkit |
nVidea Tesla S1070
Tesla S1070 er et 1U kabinet med 4 GPU'er delt i to sektioner. Tesla S1070 skal tilsluttes en eller to host PC'er. Pris cirka. kr. 60.000,- (Ser ikke ud til at kunne købes i DK)
Specifikationer
Number of Tesla GPUs | 4 |
Number of Streaming Processor Cores | 960 (240 per processor) |
Frequency of processor cores | 1.296 to 1.44 GHz |
Single Precision floating point performance (peak) | 3.73 to 4.14 TFlops |
Double Precision floating point performance (peak) | 311 to 345 GFlops |
Floating Point Precision | IEEE 754 single & double |
Total Dedicated Memory | 16 |
Memory Interface | 512-bit |
Memory Bandwidth | 408 GB/sec |
Max Power Consumption | 800 W (typical) |
System Interface | PCIe x16 or x8 |
Software Development Tools | C-based CUDA Toolkit |
CUDA
Compute Unified Device Architecture
Links til artikelserie af Rob Farber
- CUDA, Supercomputing for the Masses: Part 1 CUDA lets you work with familiar programming concepts while developing software that can run on a GPU
- CUDA, Supercomputing for the Masses: Part 2 A first kernel
- CUDA, Supercomputing for the Masses: Part 3 Error handling and global memory performance limitations
- CUDA, Supercomputing for the Masses: Part 4 Understanding and using shared memory (1)
- CUDA, Supercomputing for the Masses: Part 5 Understanding and using shared memory (2)
- CUDA, Supercomputing for the Masses: Part 6 Global memory and the CUDA profiler
- CUDA, Supercomputing for the Masses: Part 7 Double the fun with next-generation CUDA hardware
- CUDA, Supercomputing for the Masses: Part 8 Using libraries with CUDA
- CUDA, Supercomputing for the Masses: Part 9 Extending High-level Languages with CUDA
- CUDA, Supercomputing for the Masses: Part 10 CUDPP, a powerful data-parallel CUDA library
- CUDA, Supercomputing for the Masses: Part 11 Revisiting CUDA memory spaces
- CUDA, Supercomputing for the Masses: Part 12 CUDA 2.2 Changes the Data Movement Paradigm
- CUDA, Supercomputing for the Masses: Part 13 Using texture memory in CUDA
- CUDA, Supercomputing for the Masses: Part 14 Debugging CUDA and using CUDA-GDB
- CUDA, Supercomputing for the Masses: Part 15 Using Pixel Buffer Objects with CUDA and OpenGL
Links
- Tsunami cluster Interessant artikel bla. strømforbrug
- MatLAB and Tesla How-to eksempel med Linux