Difference between revisions of "Math"

From Teknologisk videncenter
Jump to: navigation, search
m
m (Eksempler)
 
Line 3: Line 3:
 
*[http://meta.wikimedia.org/wiki/Help:Formula Hjælp til formler]
 
*[http://meta.wikimedia.org/wiki/Help:Formula Hjælp til formler]
 
==Eksempler==
 
==Eksempler==
 +
<source lang=text>
 +
<math>
 +
  \operatorname{erfc}(x) =
 +
  \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 +
  \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 +
</math>
 +
</source>
 +
bliver til
 
  <math>
 
  <math>
 
   \operatorname{erfc}(x) =
 
   \operatorname{erfc}(x) =

Latest revision as of 10:30, 19 October 2010

Math tag

Hjælp

Eksempler

 <math>
  \operatorname{erfc}(x) =
  \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
  \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 </math>

bliver til

<math>
 \operatorname{erfc}(x) =
 \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</math>

<math> x = \sqrt{ 200 } </math>


  • Effekt
<math>P = U \cdot I = {U^2 \over R} = R \cdot I^2</math> (1)
  • leger og tester på Michaels side

<math>U = R \cdot I</math>

  • tja

<math>3X = Y \Rightarrow X = {Y \over 3}</math>

  • og

<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>