Difference between revisions of "Math"
From Teknologisk videncenter
m |
m (→Eksempler) |
||
Line 3: | Line 3: | ||
*[http://meta.wikimedia.org/wiki/Help:Formula Hjælp til formler] | *[http://meta.wikimedia.org/wiki/Help:Formula Hjælp til formler] | ||
==Eksempler== | ==Eksempler== | ||
+ | <source lang=text> | ||
+ | <math> | ||
+ | \operatorname{erfc}(x) = | ||
+ | \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = | ||
+ | \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} | ||
+ | </math> | ||
+ | </source> | ||
+ | bliver til | ||
<math> | <math> | ||
\operatorname{erfc}(x) = | \operatorname{erfc}(x) = |
Latest revision as of 10:30, 19 October 2010
Math tag
Hjælp
Eksempler
<math>
\operatorname{erfc}(x) =
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</math>
bliver til
<math> \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} </math>
<math> x = \sqrt{ 200 } </math>
- Effekt
<math>P = U \cdot I = {U^2 \over R} = R \cdot I^2</math> | (1) |
- leger og tester på Michaels side
<math>U = R \cdot I</math>
- tja
<math>3X = Y \Rightarrow X = {Y \over 3}</math>
- og
<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>