Enigma/primer
Contents
The Wheels
The Wheels can be installed in the Enigma in any sequence. If there are five different Wheels in total and the Enigma uses three Wheels. The total number of Wheel combinatins would be <math>5*4*3=60</math>
The software enigma
In the software Enigma you would need some random Wheels and a Random Rotor Reftlector. For examle this three bit Enigma.
Three bit Example
Crypt
In the example below if the input=2 its send to Wheel 1 position 2 which output will be 1 and that's input for Wheel 2 which outputs 0 to the Reflector that outputs 7 as input for Reverse Wheel 2 which output's 2 as input for Reverse wheel 1 which Output 0 as the encrypted message.
- 2->1->0->7->2->0
Input 0, 1, <notice>2</notice>, 3, 4, 5, 6, 7
Wheel 1 2, 7, <notice>1</notice>, 5, 6, 3, 0, 4
Wheel 2 5, <notice>0</notice>, 7, 2, 1, 6, 4, 3
Reflector <notice>7</notice>, 4, 6, 5, 1, 3, 2, 0
Reverse wheel 2 1, 4, 3, 7, 6, 0, 5, <notice>2</notice>
Reverse wheel 1(output) 6, 2, <notice>0</notice>, 5, 7, 3, 4, 1
Decrypt
- Reverse: 0->2->7->0->1->2
Input <notice>0</notice>, 1, 2, 3, 4, 5, 6, 7
Wheel 1 <notice>2</notice>, 7, 1, 5, 6, 3, 0, 4
Wheel 2 5, 0, <notice>7</notice>, 2, 1, 6, 4, 3
Reflector 7, 4, 6, 5, 1, 3, 2, <notice>0</notice>
Reverse wheel 2 <notice>1</notice>, 4, 3, 7, 6, 0, 5, 2
Reverse wheel 1(output) 6, <notice>2</notice>, 0, 5, 7, 3, 4, 1
The wheel notch
Each time a letter/digit is encrypted/decrypted - same process - the Wheels are ticked forward.
Tick 1
Wheel 1 is ticked forward on every encryption/decryption. See below. When the Notch - show in red below - ticks from 7 to 0 it will Tick the next Wheel. See Tick 2.
Wheel positions before Tick number 1 |
Input 0, 1, 2, 3, 4, 5, 6, 7
Wheel 1 <notice>2, 7, 1, 5, 6, 3, <error>0</error>, 4</notice>
Wheel 2 5, 0, 7, 2, 1, 6, <error>4,</error> 3
Reflector 7, 4, 6, 5, 1, 3, 2, 0
Reverse wheel 2 <notice>1, 4, 3, 7, 6, 0, 5, 2</notice>
Reverse wheel 1(output) 6, 2, 0, 5, 7, 3, 4, 1 |
Wheel positions after Tick number 1 |
Input 0, 1, 2, 3, 4, 5, 6, 7
Wheel 1 <notice>4, 2, 7, 1, 5, 6, 3, <error>0</error></notice>
Wheel 2 5, 0, 7, 2, 1, 6, <error>4</error>, 3
Reflector 7, 4, 6, 5, 1, 3, 2, 0
Reverse wheel 2 1, 4, 3, 7, 6, 0, 5, 2
Reverse wheel 1(output) <notice>2, 0, 5, 7, 3, 4, 1, 6</notice> |
Tick 2
Wheel 1's Notch is ticked from 7 to 0 it will Tick wheel 2 forward. The reflector will stay stationary.
Wheel positions before Tick number 2 | |
Input 0, 1, 2, 3, 4, 5, 6, 7
Wheel 1 <notice>4, 2, 7, 1, 5, 6, 3, <error>0</error></notice>
Wheel 2 5, 0, 7, 2, 1, 6, <error>4</error>, 3
Reflector 7, 4, 6, 5, 1, 3, 2, 0
Reverse wheel 2 1, 4, 3, 7, 6, 0, 5, 2
Reverse wheel 1(output) <notice>2, 0, 5, 7, 3, 4, 1, 6</notice> | |
Wheel positions after Tick number 2 | |
Input 0, 1, 2, 3, 4, 5, 6, 7
Wheel 1 <notice><error>0</error>, 4, 2, 7, 1, 5, 6, 3</notice>
Wheel 2 <notice>3, 5, 0, 7, 2, 1, 6, <error>4</error></notice>
Reflector 7, 4, 6, 5, 1, 3, 2, 0
Reverse wheel 2 <notice>2, 1, 4, 3, 7, 6, 0, 5</notice>
Reverse wheel 1(output) <notice>6, 2, 0, 5, 7, 3, 4, 1</notice> Crypto strength of three bit EnigmaIf the Wheels and Reflector are known to the hacker
If the Wheels and Reflector are unknown to the hacker
Not that impressive, see the 8 bit example below 8 bit exampleNumber of possible keys when using three wheelsIn the example below there is a caculation of possible keys that is
If we used a 10 bit rotorOr try and imagine a 32 bit wheel (Then we would need a better implementation of frac) <notice>frac(1024)</notice>
54185287960588572830769219446838547380015539635380134444828702706832\
10612073376603733140984136214586719079188457089807539319941657701873\
68260454133333721939108367528012764993769768292516937891165755680659\
66374794731451840488667767255612518869433525121367727452196343077013\
37132057962484331288700884361716546902375183904529447322778084029321\
58722061853806162806063925435310822186848239287130261690914211362251\
14468471388858788162925210404629531594994390035788241024393431503744\
41138908061814062108639532752353758850185984515822295996545585412427\
89130902486944298610923153307579131675745146436304024890820442907734\
56182736903050225279692655307296737099075874779312763510470246988966\
79614621330262371589732278578146318071564277676440645910850765647834\
56324457736853810336981776080498707767046394272605341416779125697733\
37456803747518667626596166561588468145026333704252266414186215704682\
56847733609443267374936766749150989537681129458316266438564790278163\
85730291542667725665642276826058264393884514911976419675509290208592\
71315636298329098944105273212518724952750131407167640551693619078182\
12367019122957673631170541265899299164820085157817519554669109028387\
29232224509906388638147771255227782631322385756948819393658889908993\
67087451686065309841102029985381628156433498184710577783953474253149\
96221034888075845137057698397639931039296650460461211666513451311495\
13657400869056334867859885025601787284982567787314407216524272262997\
31979156860362940662474010148269755953315573665880056292127468065728\
52015704019406922855578006114290557553245497940089398491468126398607\
50085263298820224719585505344773711590656682821041417265040658600683\
84494510435499881288680131655155171467338832334085176381971359131237\
25486737347835373163415173693875652128997265979649032412087273486906\
99802996369265070088758384854547542272771024255049902319275830918157\
44820519642107283720493729351617534195777542245315244228039137240771\
78916612030610402558300550338867900521160254087404546209383843676378\
86658769912790922323717371343176067483352513629123362885893627132294\
18356588401041872786935443907708527828855830842709046107501900718493\
31399155582127523923298797806496390753338457191738228405018695704636\
26600235265587502335595489311637509380219119860471335771652403999403\
29636024557725796367328665434895732574099971056713162327234576676193\
76514081039991936339082864205100985774545240681068973924931382873622\
26257920000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000 |